888 resultados para Segmentação de Imagem
Resumo:
Dissertação de Mestrado em Gestão do Território, Especialização em Detecção Remota e Sistemas de Informação Geográfica
Resumo:
O objetivo desta dissertação foi criar uma nova abordagem para identificar de maneira automática feições do tipo edificação em uma imagem digital. Tal identificação seria de interesse de órgãos públicos que lidam com planejamento urbano para fins de controle da ocupação humana irregular. A abordagem criada utilizou agentes de software especialistas para proceder com o processamento da segmentação e reconhecimento de feições na imagem digital. Os agentes foram programados para tratar uma imagem colorida com o padrão Red, Green e Blue (RGB). A criação desta nova abordagem teve como motivação o fato das atuais técnicas existentes de segmentação e classificação de imagens dependerem sobremaneira dos seus usuários. Em outras palavras, pretendeu-se com a abordagem em questão permitir que usuários menos técnicos pudessem interagir com um sistema classificador, sem a necessidade de profundos conhecimentos de processamento digital de imagem. Uma ferramenta protótipo foi desenvolvida para testar essa abordagem, que emprega de forma inusitada, agentes inteligentes, com testes feitos em recortes de ortofotos digitais do Município de Angra dos Reis (RJ).
Resumo:
The aim of this work is to study some of the density estimation tec- niques and to apply to the segmentation of medical images. Medical images are used to help the diagnostic of tumor diseases as well as to plan and deliver treatment. A computer image is an array of values representing colors in some scale. The smallest element of the image to which it is possible to assign a value is called pixel. Segmen- tation is the process of dividing the image in portions through the classi¯cation of each pixel. The simplest way of classi¯cation is by thresholding, given the number of portions and the threshold values. Another method is constructing a histogram of the pixel values and assign a portion to each pike. The threshold is the mean between two pikes. As the histogram does not form a smooth curve it is di±cult to discern between true pikes and random variation. Density estimation methods allow the estimation of a smooth curve. Image data can be considered as mixture of different densities. In this project parametric and nonparametric methods for density estimation will be addressed and some of them are applied to CT image data
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Automatic detection of blood components is an important topic in the field of hematology. The segmentation is an important stage because it allows components to be grouped into common areas and processed separately and leukocyte differential classification enables them to be analyzed separately. With the auto-segmentation and differential classification, this work is contributing to the analysis process of blood components by providing tools that reduce the manual labor and increasing its accuracy and efficiency. Using techniques of digital image processing associated with a generic and automatic fuzzy approach, this work proposes two Fuzzy Inference Systems, defined as I and II, for autosegmentation of blood components and leukocyte differential classification, respectively, in microscopic images smears. Using the Fuzzy Inference System I, the proposed technique performs the segmentation of the image in four regions: the leukocyte’s nucleus and cytoplasm, erythrocyte and plasma area and using the Fuzzy Inference System II and the segmented leukocyte (nucleus and cytoplasm) classify them differentially in five types: basophils, eosinophils, lymphocytes, monocytes and neutrophils. Were used for testing 530 images containing microscopic samples of blood smears with different methods. The images were processed and its accuracy indices and Gold Standards were calculated and compared with the manual results and other results found at literature for the same problems. Regarding segmentation, a technique developed showed percentages of accuracy of 97.31% for leukocytes, 95.39% to erythrocytes and 95.06% for blood plasma. As for the differential classification, the percentage varied between 92.98% and 98.39% for the different leukocyte types. In addition to promoting auto-segmentation and differential classification, the proposed technique also contributes to the definition of new descriptors and the construction of an image database using various processes hematological staining
Resumo:
The algorithm developed uses an octree pyramid in which noise is reduced at the expense of the spatial resolution. At a certain level an unsupervised clustering without spatial connectivity constraints is applied. After the classification, isolated voxels and insignificant regions are removed by assigning them to their neighbours. The spatial resolution is then increased by the downprojection of the regions, level by level. At each level the uncertainty of the boundary voxels is minimised by a dynamic selection and classification of these, using an adaptive 3D filtering. The algorithm is tested using different data sets, including NMR data.
Resumo:
A malária é uma doença infecciosa complexa, que resulta do “vírus” plasmodium, e manifesta-se sob cinco tipos distintos de espécies protozoários (plasmodium vivax, plasmodium ovale, plasmodium falciparum, plasmodium malariae e plasmodium Knowlesi), atacando sobretudo os glóbulos vermelhos. Considerada a quinta maior causa de morte por doenças infecciosas em todo o mundo após doenças respiratórias, VIH/SIDA, doenças diarreicas e tuberculose, no continente africano, a malária é considerada a segunda causa do aumento da mortalidade, após VIH/SIDA. No caso particular da Guiné-Bissau, esta constitui a principal causa do incremento da morbilidade e da mortalidade naquele país, onde, em 2012 foram notificados 129.684 casos de paludismo, dos quais 370 resultaram em óbitos. Partindo da realidade acima constatada, em particular, da complexidade e o impacto global da doença associada a uma forte mortalidade e morbilidade, concluiu-se ser necessário abordar esta temática, utilizando os SIG e a DR no sentido de determinar as regiões de elevado risco. Entendeu-se serem necessárias novas abordagens e novas ferramentas de análise dos dados epidemiológicos e consequentemente novas metodologias que possibilitem a determinação de áreas de risco por malária. O presente estudo, pretende demonstrar o papel dos SIG e DR na determinação das regiões de risco por malária. A metodologia utilizada centrou-se numa abordagem quantitativa baseada na hierarquização das variáveis. Pretende-se, assim abordar os impactos da malária e simultaneamente demonstrar as potencialidades dos SIG e das ferramentas de Análise Espacial no estudo da disseminação da mesma na Guiné-Bissau.
Resumo:
O presente trabalho implementa um método computacional semi-automático para obter medidas de estruturas cardíacas de fetos humanos através do processamento de imagens de ultra-som. Essas imagens são utilizadas na avaliação cardíaca pré-natal, permitindo que os médicos diagnostiquem problemas antes mesmo do nascimento. A dissertação é parte de um projeto desenvolvido no Instituto de Informática da Universidade Federal do Rio Grande do Sul, denominado SEGIME (Segmentação de Imagens Médicas). Neste projeto, está sendo desenvolvida uma ferramenta computacional para auxiliar na análise de exames ecocardiográficos fetais com o apoio da equipe de Cardiologia Fetal do Instituto de Cardiologia do Rio Grande do Sul. O processamento de cada imagem é realizado por etapas, divididas em: aquisição, pré-processamento, segmentação e obtenção das medidas. A aquisição das imagens é realizada por especialistas do Instituto de Cardiologia. No pré-processamento, é extraída a região de interesse para a obtenção das medidas e a imagem é filtrada para a extração do ruído característico das imagens de ultra-som. A segmentação das imagens é realizada através de redes neurais artificiais, sendo que a rede neural utilizada é conhecida como Mapa Auto-organizável de Kohonen. Ao final do processo de segmentação, a imagem está pronta para a obtenção das medidas. A técnica desenvolvida nesta dissertação para obtenção das medidas foi baseada nos exames realizados pelos especialistas na extração manual de medidas. Essa técnica consiste na análise da linha referente à estrutura de interesse onde serão detectadas as bordas. Para o início das medidas, é necessário que o usuário indique o ponto inicial sobre uma borda da estrutura. Depois de encontradas as bordas, através da análise da linha, a medida é definida pela soma dos pixels entre os dois pontos de bordas. Foram realizados testes com quatro estruturas cardíacas fetais: a espessura do septo interventricular, o diâmetro do ventrículo esquerdo, a excursão do septum primum para o interior do átrio esquerdo e o diâmetro do átrio esquerdo. Os resultados obtidos pelo método foram avaliados através da comparação com resultados de referência obtidos por especialistas. Nessa avaliação observou-se que a variação foi regular e dentro dos limites aceitáveis, normalmente obtida como variação entre especialistas. Desta forma, um médico não especializado em cardiologia fetal poderia usar esses resultados em um diagnóstico preliminar.
Resumo:
A 3D binary image is considered well-composed if, and only if, the union of the faces shared by the foreground and background voxels of the image is a surface in R3. Wellcomposed images have some desirable topological properties, which allow us to simplify and optimize algorithms that are widely used in computer graphics, computer vision and image processing. These advantages have fostered the development of algorithms to repair bi-dimensional (2D) and three-dimensional (3D) images that are not well-composed. These algorithms are known as repairing algorithms. In this dissertation, we propose two repairing algorithms, one randomized and one deterministic. Both algorithms are capable of making topological repairs in 3D binary images, producing well-composed images similar to the original images. The key idea behind both algorithms is to iteratively change the assigned color of some points in the input image from 0 (background)to 1 (foreground) until the image becomes well-composed. The points whose colors are changed by the algorithms are chosen according to their values in the fuzzy connectivity map resulting from the image segmentation process. The use of the fuzzy connectivity map ensures that a subset of points chosen by the algorithm at any given iteration is the one with the least affinity with the background among all possible choices
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A Histologia, o estudo de tecidos, é uma das áreas fundamentais da Biologia que permitiu enormes avanços científicos. Sendo uma tarefa exigente, meticulosa e demorada, será importante aproveitar a existência de ferramentas e algoritmos computacionais no seu auxílio, tornando o processo mais rápido e possibilitando a descoberta de informação que poderá não estar visível à partida. Esta dissertação tem como principal objectivo averiguar se um animal foi ou não sujeito à ingestão de um xenobiótico. Com esse objectivo em vista, utilizaram-se técnicas de processamento e segmentação de imagem aplicadas a imagens de tecido renal de ratos saudáveis e ratos que ingeriram o xenobiótico. Destas imagens extraíram-se inúmeras características do corpúsculo renal que após serem analisadas através de vários algoritmos de classificação mostraram ser possível saber se o animal ingeriu ou não o xenobiótico, com um reduzido grau de incerteza. ABSTRACT: Histology, the study of tissues, is one of the key areas of Biology that has allowed huge advances in Science. Being a demanding, meticulous and time consuming task, it is important to use the existence of computational tools and algorithms in its aid, making the process faster and enabling the discovery of information that may not be initially visible. The main goal of this thesis is to ascertain if an animal was subjected or not to the ingestion of a xenobiotic. With this in mind, were used image processing and segmentation techniques applied on images of kidney tissue from healthy rats and rats that ingested the xenobiotic. From these images were extracted several features of renal glomeruli that after being analyzed by various classification algorithms had shown to be possible to know, with an acceptable degree of certainty, if the animal ingested or not the xenobiotic.
Classificação da ocupação do solo através da segmentação de uma imagem de satélite de alta resolução
Resumo:
Este caso de estudo tem como objetivo demonstrar a utilidade da utilização de imagens de satélite de alta resolução para a produção de cartografia temática em áreas urbanas, bem como, experimentar a extracção de elementos de uma imagem de alta resolução a partir de protocolos de segmentação, aplicando uma abordagem orientada por regiões, e recorrendo a dados de uma cena do satélite WorldView2 com as suas novas 4 bandas adicionais. Definiu-se uma nomenclatura de ocupação de solo com base na fotointerpretação da imagem, criou-se uma legenda hierarquizada por 3 níveis de desagregação. No primeiro nível incluiu-se sete classes, no segundo nível as classes foram classificadas pelo nome dos objetos identificados na fotointerpretação, e o terceiro nível foram classificados pelas características dos objetos definidos no nível anterior. Foram criados segmentos de treino através do algoritmo da segmentação, que tem como função criar segmentos vetoriais com base na similaridade espectral e no valor espectral dos conjuntos dos pixéis vizinhos, testou-se varios parâmetros de segmentação de modo a obter o nível de segmentação que visivelmente na imagem se aproximasse mais aos objetos reconhecidos, para assim se gerar as assinaturas espectrais dos objetos representados pela segmentação, procedendo-se à classificação de ocupação de solo baseada nos segmentos.
Resumo:
Vários métodos tradicionais de segmentação de imagens, como a transformada de watershed de marcado- res e métodos de conexidade fuzzy (Relative Fuzzy Connectedness- RFC, Iterative Relative Fuzzy Connected- ness - IRFC), podem ser implementados de modo eficiente utilizando o método em grafos da Transformada Imagem-Floresta (Image Foresting Transform - IFT). No entanto, a carência de termos de regularização de fronteira em sua formulação fazem com que a borda do objeto segmentado possa ser altamente irregular. Um modo de contornar isto é por meio do uso de restrições de forma do objeto, que favoreçam formas mais regulares, como na recente restrição de convexidade geodésica em estrela (Geodesic Star Convexity - GSC). Neste trabalho, apresentamos uma nova restrição de forma, chamada de Faixa de Restrição Geodésica (Geodesic Band Constraint - GBC), que pode ser incorporada eficientemente em uma sub-classe do fra- mework de corte em grafos generalizado (Generalized Graph Cut - GGC), que inclui métodos pela IFT. É apresentada uma prova da otimalidade do novo algoritmo em termos de um mínimo global de uma função de energia sujeita às novas restrições de borda. A faixa de restrição geodésica nos ajuda a regularizar a borda dos objetos, consequentemente melhorando a segmentação de objetos com formas mais regulares, mantendo o baixo custo computacional da IFT. A GBC pode também ser usada conjuntamente com um mapa de custos pré estabelecido, baseado em um modelo de forma, de modo a direcionar a segmentação a seguir uma dada forma desejada, com grau de liberdade de escala e demais deformações controladas por um parâmetro único. Essa nova restrição também pode ser combinada com a GSC e com as restrições de polaridade de borda sem custo adicional. O método é demonstrado em imagens naturais, sintéticas e médicas, sendo estas provenientes de tomografias computadorizadas e de ressonância magnética.