940 resultados para Second-Order Effects


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates the feasibility of predicting the momentamplification in beam-column elements of steel moment-resisting frames using the structure's natural period. Unlike previous methods, which perform moment-amplification on a story-by-story basis, this study develops and tests two models that aim to predict a global amplification factor indicative of the largest relevant instance of local moment amplification in the structure. To thisend, a variety of two-dimensional frames is investigated using first and secondorder finite element analysis. The observed moment amplification is then compared with the predicted amplification based on the structure's natural period, which is calculated by first-order finite element analysis. As a benchmark, design moment amplification factors are calculated for each story using the story stiffness approach, and serve to demonstrate the relativeconservatism and accuracy of the proposed models with respect to current practice in design. The study finds that the observed moment amplification factors may vastly exceed expectations when internal member stresses are initially very small. Where the internal stresses are small relative to the member capacities, thesecases are inconsequential for design. To qualify the significance of the observed amplification factors, two parameters are used: the second-order moment normalized to the plastic moment capacity, and the combined flexural and axial stress interaction equations developed by AISC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La Energía eléctrica producida mediante tecnología eólica flotante es uno de los recursos más prometedores para reducir la dependencia de energía proveniente de combustibles fósiles. Esta tecnología es de especial interés en países como España, donde la plataforma continental es estrecha y existen pocas áreas para el desarrollo de estructuras fijas. Entre los diferentes conceptos flotantes, esta tesis se ha ocupado de la tipología semisumergible. Estas plataformas pueden experimentar movimientos resonantes en largada y arfada. En largada, dado que el periodo de resonancia es largo estos puede ser inducidos por efectos de segundo orden de deriva lenta que pueden tener una influencia muy significativa en las cargas en los fondeos. En arfada las fuerzas de primer orden pueden inducir grandes movimientos y por tanto la correcta determinación del amortiguamiento es esencial para la analizar la operatividad de la plataforma. Esta tesis ha investigado estos dos efectos, para ello se ha usado como caso base el diseño de una plataforma desarrollada en el proyecto Europeo Hiprwind. La plataforma se compone de 3 columnas cilíndricas unidas mediante montantes estructurales horizontales y diagonales, Los cilindros proporcionan flotabilidad y momentos adrizante. A la base de cada columna se le ha añadido un gran “Heave Plate” o placa de cierre. El diseño es similar a otros diseños previos (Windfloat). Se ha fabricado un modelo a escala de una de las columnas para el estudio detallado del amortiguamiento mediante oscilaciones forzadas. Las dimensiones del modelo (1m diámetro en la placa de cierre) lo hacen, de los conocidos por el candidato, el mayor para el que se han publicado datos. El diseño del cilindro se ha realizado de tal manera que permite la fijación de placas de cierre planas o con refuerzo, ambos modelos se han fabricado y analizado. El modelo con refuerzos es una reproducción exacta del diseño a escala real incluyendo detalles distintivos del mismo, siendo el más importante la placa vertical perimetral. Los ensayos de oscilaciones forzadas se han realizado para un rango de frecuencias, tanto para el disco plano como el reforzado. Se han medido las fuerzas durante los ensayos y se han calculado los coeficientes de amortiguamiento y de masa añadida. Estos coeficientes son necesarios para el cálculo del fondeo mediante simulaciones en el dominio del tiempo. Los coeficientes calculados se han comparado con la literatura existente, con cálculos potenciales y por ultimo con cálculos CFD. Para disponer de información relevante para el diseño estructural de la plataforma se han medido y analizado experimentalmente las presiones en la parte superior e inferior de cada placa de cierre. Para la correcta estimación numérica de las fuerzas de deriva lenta en la plataforma se ha realizado una campaña experimental que incluye ensayos con modelo cautivo de la plataforma completa en olas bicromaticas. Pese a que estos experimentos no reproducen un escenario de oleaje realista, los mismos permiten una verificación del modelo numérico mediante la comparación de fuerzas medidas en el modelo físico y el numérico. Como resultados de esta tesis podemos enumerar las siguientes conclusiones. 1. El amortiguamiento y la masa añadida muestran una pequeña dependencia con la frecuencia pero una gran dependencia con la amplitud del movimiento. siendo coherente con investigaciones existentes. 2. Las medidas con la placa de cierre reforzada con cierre vertical en el borde, muestra un amortiguamiento significativamente menor comparada con la placa plana. Esto implica que para ensayos de canal es necesario incluir estos detalles en el modelo. 3. La masa añadida no muestra grandes variaciones comparando placa plana y placa con refuerzos. 4. Un coeficiente de amortiguamiento del 6% del crítico se puede considerar conservador para el cálculo en el dominio de la frecuencia. Este amortiguamiento es equivalente a un coeficiente de “drag” de 4 en elementos de Morison cuadráticos en las placas de cierre usadas en simulaciones en el dominio del tiempo. 5. Se han encontrado discrepancias en algunos valores de masa añadida y amortiguamiento de la placa plana al comparar con datos publicados. Se han propuesto algunas explicaciones basadas en las diferencias en la relación de espesores, en la distancia a la superficie libre y también relacionadas con efectos de escala. 6. La presión en la placa con refuerzos son similares a las de la placa plana, excepto en la zona del borde donde la placa con refuerzo vertical induce una gran diferencias de presiones entre la cara superior e inferior. 7. La máxima diferencia de presión escala coherentemente con la fuerza equivalente a la aceleración de la masa añadida distribuida sobre la placa. 8. Las masas añadidas calculadas con el código potencial (WADAM) no son suficientemente precisas, Este software no contempla el modelado de placas de pequeño espesor con dipolos, la poca precisión de los resultados aumenta la importancia de este tipo de elementos al realizar simulaciones con códigos potenciales para este tipo de plataformas que incluyen elementos de poco espesor. 9. Respecto al código CFD (Ansys CFX) la precisión de los cálculos es razonable para la placa plana, esta precisión disminuye para la placa con refuerzo vertical en el borde, como era de esperar dado la mayor complejidad del flujo. 10. Respecto al segundo orden, los resultados, en general, muestran que, aunque la tendencia en las fuerzas de segundo orden se captura bien con los códigos numéricos, se observan algunas reducciones en comparación con los datos experimentales. Las diferencias entre simulaciones y datos experimentales son mayores al usar la aproximación de Newman, que usa únicamente resultados de primer orden para el cálculo de las fuerzas de deriva media. 11. Es importante remarcar que las tendencias observadas en los resultados con modelo fijo cambiarn cuando el modelo este libre, el impacto que los errores en las estimaciones de fuerzas segundo orden tienen en el sistema de fondeo dependen de las condiciones ambientales que imponen las cargas ultimas en dichas líneas. En cualquier caso los resultados que se han obtenido en esta investigación confirman que es necesaria y deseable una detallada investigación de los métodos usados en la estimación de las fuerzas no lineales en las turbinas flotantes para que pueda servir de guía en futuros diseños de estos sistemas. Finalmente, el candidato espera que esta investigación pueda beneficiar a la industria eólica offshore en mejorar el diseño hidrodinámico del concepto semisumergible. ABSTRACT Electrical power obtained from floating offshore wind turbines is one of the promising resources which can reduce the fossil fuel energy consumption and cover worldwide energy demands. The concept is the most competitive in countries, such as Spain, where the continental shelf is narrow and does not provide space for fixed structures. Among the different floating structures concepts, this thesis has dealt with the semisubmersible one. Platforms of this kind may experience resonant motions both in surge and heave directions. In surge, since the platform natural period is long, such resonance can be excited with second order slow drift forces and may have substantial influence on mooring loads. In heave, first order forces can induce significant motion, whose damping is a crucial factor for the platform downtime. These two topics have been investigated in this thesis. To this aim, a design developed during HiPRWind EU project, has been selected as reference case study. The platform is composed of three cylindrical legs, linked together by a set of structural braces. The cylinders provide buoyancy and restoring forces and moments. Large circular heave plates have been attached to their bases. The design is similar to other documented in literature (e.g. Windfloat), which implies outcomes could have a general value. A large scale model of one of the legs has been built in order to study heave damping through forced oscillations. The final dimensions of the specimen (one meter diameter discs) make it, to the candidate’s knowledge, the largest for which data has been published. The model design allows for the fitting of either a plain solid heave plate or a flapped reinforced one; both have been built. The latter is a model scale reproduction of the prototype heave plate and includes some distinctive features, the most important being the inclusion of a vertical flap on its perimeter. The forced oscillation tests have been conducted for a range of frequencies and amplitudes, with both the solid plain model and the vertical flap one. Forces have been measured, from which added mass and damping coefficients have been obtained. These are necessary to accurately compute time-domain simulations of mooring design. The coefficients have been compared with literature, and potential flow and CFD predictions. In order to provide information for the structural design of the platform, pressure measurements on the top and bottom side of the heave discs have been recorded and pressure differences analyzed. In addition, in order to conduct a detailed investigation on the numerical estimations of the slow-drift forces of the HiPRWind platform, an experimental campaign involving captive (fixed) model tests of a model of the whole platform in bichromatic waves has been carried out. Although not reproducing the more realistic scenario, these tests allowed a preliminary verification of the numerical model based directly on the forces measured on the structure. The following outcomes can be enumerated: 1. Damping and added mass coefficients show, on one hand, a small dependence with frequency and, on the other hand, a large dependence with the motion amplitude, which is coherent with previously published research. 2. Measurements with the prototype plate, equipped with the vertical flap, show that damping drops significantly when comparing this to the plain one. This implies that, for tank tests of the whole floater and turbine, the prototype plate, equipped with the flap, should be incorporated to the model. 3. Added mass values do not suffer large alterations when comparing the plain plate and the one equipped with a vertical flap. 4. A conservative damping coefficient equal to 6% of the critical damping can be considered adequate for the prototype heave plate for frequency domain analysis. A corresponding drag coefficient equal to 4.0 can be used in time domain simulations to define Morison elements. 5. When comparing to published data, some discrepancies in added mass and damping coefficients for the solid plain plate have been found. Explanations have been suggested, focusing mainly on differences in thickness ratio and distance to the free surface, and eventual scale effects. 6. Pressures on the plate equipped with the vertical flap are similar in magnitude to those of the plain plate, even though substantial differences are present close to the edge, where the flap induces a larger pressure difference in the reinforced case. 7. The maximum pressure difference scales coherently with the force equivalent to the acceleration of the added mass, distributed over the disc surface. 8. Added mass coefficient values predicted with the potential solver (WADAM) are not accurate enough. The used solver does not contemplate modeling thin plates with doublets. The relatively low accuracy of the results highlights the importance of these elements when performing potential flow simulations of offshore platforms which include thin plates. 9. For the full CFD solver (Ansys CFX), the accuracy of the computations is found reasonable for the plain plate. Such accuracy diminishes for the disc equipped with a vertical flap, an expected result considering the greater complexity of the flow. 10. In regards to second order effects, in general, the results showed that, although the main trend in the behavior of the second-order forces is well captured by the numerical predictions, some under prediction of the experimental values is visible. The gap between experimental and numerical results is more pronounced when Newman’s approximation is considered, making use exclusively of the mean drift forces calculated in the first-order solution. 11. It should be observed that the trends observed in the fixed model test may change when the body is free to float, and the impact that eventual errors in the estimation of the second-order forces may have on the mooring system depends on the characteristics of the sea conditions that will ultimately impose the maximum loads on the mooring lines. Nevertheless, the preliminary results obtained in this research do confirm that a more detailed investigation of the methods adopted for the estimation of the nonlinear wave forces on the FOWT would be welcome and may provide some further guidance for the design of such systems. As a final remark, the candidate hopes this research can benefit the offshore wind industry in improving the hydrodynamic design of the semi-submersible concept.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the effects of temperature and strain on the spectra of the first and second-order diffraction attenuation bands of a single long-period grating (LPG) in step-index fibre. The primary and second-order attenuation bands had comparable strength with the second-order bands appearing in the visible and near-infra red parts of the spectrum. Using first and second-order diffraction to the eighth cladding mode a sensitivity matrix was obtained with limiting accuracy given by cross-sensitivity of ~1.19% of the measurement. The sensing scheme presented as a limiting temperature and strain resolution of ±0.7 °C and ~±25 µ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the effects of temperature and strain on the spectra of the first and second-order diffraction attenuation bands of a single long-period grating (LPG) in step-index fibre. The primary and second-order attenuation bands had comparable strength with the second-order bands appearing in the visible and near-infra red parts of the spectrum. Using first and second-order diffraction to the eighth cladding mode a sensitivity matrix was obtained with limiting accuracy given by cross-sensitivity of ∼ 1.19% of the measurement. The sensing scheme presented as a limiting temperature and strain resolution of ± 0.7 °C and ∼ ± 25 με. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behaviour of the harmonic infrared frequency of diatomic molecules subjected to moderate static uniform electric fields is analysed. The potential energy expression has been developed as a function of a static uniform electric field, which brings about a formulation describing the frequency versus field strength curve. With the help of the first and second derivatives of the expressions obtained, which correspond to the first- and second-order Stark effects, it was possible to find the maxima of the frequency versus field strength curves for a series of molecules using a Newton-Raphson search. A method is proposed which requires only the calculation of a few energy derivatives at a particular value of the field strength. At the same time, the expression for the dependence of the interatomic distance on the electric field strength is derived and the minimum of this curve is found for the same species. Derived expressions and numerical results are discussed and compared with other studi

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main focus of this paper is on hydrodynamic modelling of a semisubmersible platform (which can support a 1.5MW wind turbine and is composed by three buoyant columns connected by bracings) with especial emphasis on the estimation of the wave drift components and their effects on the design of the mooring system. Indeed, with natural periods of drift around 60 seconds, accurate computation of the low-frequency second-order components is not a straightforward task. As methods usually adopted when dealing with the slow-drifts of deep-water moored systems, such as Newman?s approximation, have their errors increased by the relatively low resonant periods, and as the effects of depth cannot be ignored, the wave diffraction analysis must be based on full Quadratic Transfer Functions (QTF) computations. A discussion on the numerical aspects of performing such computations is presented, making use of the second-order module available with the seakeeping software WAMIT®. Finally, the paper also provides a preliminary verification of the accuracy of the numerical predictions based on the results obtained in a series of model tests with the structure fixed in bichromatic waves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method of discriminating between temperature and strain effects in fibre sensing using a conventionally written, in-fibre Bragg grating is presented. The technique uses wavelength information from the first and second diffraction orders of the grating element to determine the wavelength dependent strain and temperature coefficients, from which independent temperature and strain measurements can be made. The authors present results that validate this matrix inversion technique and quantify the strain and temperature errors which can arise for a given uncertainty in the measurement of the reflected wavelength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method of discriminating between temperature and strain effects in fibre sensing using a conventionally written, in-fibre Bragg grating is presented. The technique uses wavelength information from the first and second diffraction orders of the grating element to determine the wavelength dependent strain and temperature coefficients, from which independent temperature and strain measurements can be made. The authors present results that validate this matrix inversion technique and quantify the strain and temperature errors which can arise for a given uncertainty in the measurement of the reflected wavelength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: Primary 35J70; Secondary 35J15, 35D05.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under contact metamorphic conditions, carbonate rocks in the direct vicinity of the Adamello pluton reflect a temperature-induced grain coarsening. Despite this large-scale trend, a considerable grain size scatter occurs on the outcrop-scale indicating local influence of second-order effects such as thermal perturbations, fluid flow and second-phase particles. Second-phase particles, whose sizes range from nano- to the micron-scale, induce the most pronounced data scatter resulting in grain sizes too small by up to a factor of 10, compared with theoretical grain growth in a pure system. Such values are restricted to relatively impure samples consisting of up to 10 vol.% micron-scale second-phase particles, or to samples containing a large number of nano-scale particles. The obtained data set suggests that the second phases induce a temperature-controlled reduction on calcite grain growth. The mean calcite grain size can therefore be expressed in the form D 1⁄4 C2 eQ*/RT(dp/fp)m*, where C2 is a constant, Q* is an activation energy, T the temperature and m* the exponent of the ratio dp/fp, i.e. of the average size of the second phases divided by their volume fraction. However, more data are needed to obtain reliable values for C2 and Q*. Besides variations in the average grain size, the presence of second-phase particles generates crystal size distribution (CSD) shapes characterized by lognormal distributions, which differ from the Gaussian-type distributions of the pure samples. In contrast, fluid-enhanced grain growth does not change the shape of the CSDs, but due to enhanced transport properties, the average grain sizes increase by a factor of 2 and the variance of the distribution increases. Stable d18O and d13C isotope ratios in fluid-affected zones only deviate slightly from the host rock values, suggesting low fluid/rock ratios. Grain growth modelling indicates that the fluid-induced grain size variations can develop within several ka. As inferred from a combination of thermal and grain growth modelling, dykes with widths of up to 1 m have only a restricted influence on grain size deviations smaller than a factor of 1.1.To summarize, considerable grain size variations of up to one order of magnitude can locally result from second-order effects. Such effects require special attention when comparing experimentally derived grain growth kinetics with field studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A class of semilinear evolution equations of the second order in time of the form u(tt)+Au+mu Au(t)+Au(tt) = f(u) is considered, where -A is the Dirichlet Laplacian, 92 is a smooth bounded domain in R(N) and f is an element of C(1) (R, R). A local well posedness result is proved in the Banach spaces W(0)(1,p)(Omega)xW(0)(1,P)(Omega) when f satisfies appropriate critical growth conditions. In the Hilbert setting, if f satisfies all additional dissipativeness condition, the nonlinear Semigroup of global solutions is shown to possess a gradient-like attractor. Existence and regularity of the global attractor are also investigated following the unified semigroup approach, bootstrapping and the interpolation-extrapolation techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The asymptotic behavior of a class of coupled second-order nonlinear dynamical systems is studied in this paper. Using very mild assumptions on the vector-field, conditions on the coupling parameters that guarantee synchronization are provided. The proposed result does not require solutions to be ultimately bounded in order to prove synchronization, therefore it can be used to study coupled systems that do not globally synchronize, including synchronization of unbounded solutions. In this case, estimates of the synchronization region are obtained. Synchronization of two-coupled nonlinear pendulums and two-coupled Duffing systems are studied to illustrate the application of the proposed theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We give conditions on f involving pairs of lower and upper solutions which lead to the existence of at least three solutions of the two point boundary value problem y" + f(x, y, y') = 0, x epsilon [0, 1], y(0) = 0 = y(1). In the special case f(x, y, y') = f(y) greater than or equal to 0 we give growth conditions on f and apply our general result to show the existence of three positive solutions. We give an example showing this latter result is sharp. Our results extend those of Avery and of Lakshmikantham et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subcycling algorithms which employ multiple timesteps have been previously proposed for explicit direct integration of first- and second-order systems of equations arising in finite element analysis, as well as for integration using explicit/implicit partitions of a model. The author has recently extended this work to implicit/implicit multi-timestep partitions of both first- and second-order systems. In this paper, improved algorithms for multi-timestep implicit integration are introduced, that overcome some weaknesses of those proposed previously. In particular, in the second-order case, improved stability is obtained. Some of the energy conservation properties of the Newmark family of algorithms are shown to be preserved in the new multi-timestep extensions of the Newmark method. In the first-order case, the generalized trapezoidal rule is extended to multiple timesteps, in a simple way that permits an implicit/implicit partition. Explicit special cases of the present algorithms exist. These are compared to algorithms proposed previously. (C) 1998 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mating order can have important consequences for the fertilization success of males whose ejaculates compete to fertilize a clutch of eggs. Despite an excellent body of literature on mating-order effects in many animals, they have rarely been considered in marine free-spawning invertebrates, where both sexes release gametes into the water column. In this study, we show that in such organisms, mating order can have profound repercussions for male reproductive success. Using in vitro fertilization for two species of sea urchin we found that the 'fertilization history' of a clutch of eggs strongly influenced the size distribution of unfertilized eggs, and consequently the likelihood that they will be fertilized. Males that had first access to a batch of eggs enjoyed elevated fertilization success because they had privileged access to the largest and therefore most readily fertilizable eggs within a clutch. By contrast, when a male's sperm were exposed to a batch of unfertilized eggs left over from a previous mating event, fertilization rates were reduced, owing to smaller eggs remaining in egg clutches previously exposed to sperm. Because of this size-dependent fertilization, the fertilization history of eggs also strongly influenced the size distribution of offspring, with first-spawning males producing larger, and therefore fitter, offspring. These findings suggest that when there is variation in egg size, mating order will influence not only the quantity but also the quality of offspring sired by competing males.