995 resultados para Sea level variability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of the world greatest lake, the Caspian Sea, level changes attracts the increased attention due to its environmental consequences and unique natural characteristics. Despite the huge number of studies aimed to explain the reasons of the sea level variations the underlying mechanism has not yet been clarified. The important question is to what extent the CSL variability is linked to changes in the global climate system and to what extent it can be explained by internal natural variations in the Caspian regional hydrological system. In this study an evidence of a link between the El Niño/Southern Oscillation phenomenon and changes of the Caspian Sea level is presented. This link was also found to be dominating in numerical experiments with the ECHAM4 atmospheric general circulation model on the 20th century climate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantifying the effect of the seawater density changes on sea level variability is of crucial importance for climate change studies, as the sea level cumulative rise can be regarded as both an important climate change indicator and a possible danger for human activities in coastal areas. In this work, as part of the Ocean Reanalysis Intercomparison Project, the global and regional steric sea level changes are estimated and compared from an ensemble of 16 ocean reanalyses and 4 objective analyses. These estimates are initially compared with a satellite-derived (altimetry minus gravimetry) dataset for a short period (2003–2010). The ensemble mean exhibits a significant high correlation at both global and regional scale, and the ensemble of ocean reanalyses outperforms that of objective analyses, in particular in the Southern Ocean. The reanalysis ensemble mean thus represents a valuable tool for further analyses, although large uncertainties remain for the inter-annual trends. Within the extended intercomparison period that spans the altimetry era (1993–2010), we find that the ensemble of reanalyses and objective analyses are in good agreement, and both detect a trend of the global steric sea level of 1.0 and 1.1 ± 0.05 mm/year, respectively. However, the spread among the products of the halosteric component trend exceeds the mean trend itself, questioning the reliability of its estimate. This is related to the scarcity of salinity observations before the Argo era. Furthermore, the impact of deep ocean layers is non-negligible on the steric sea level variability (22 and 12 % for the layers below 700 and 1500 m of depth, respectively), although the small deep ocean trends are not significant with respect to the products spread.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sealevel change is one of the ocean characteristics closely connected to climate change. Understanding its variation is essential since a large portion of the world’s population is located in low–lying locations. Two main techniques are employed to measure sea level: satellite altimetry and tide gauges. Satellite altimetry monitors sealevel relative to a geocentric reference, is unaffected by crustal processes and covers nearly the entire surface of the oceans since 1993. Conversely, tide gauges measure sea level at specific coastal locations and relative to a local ground benchmark, therefore are impacted by vertical land movements. In this study, the linear and non–linear geocentric and relative sealevel trends along the Emilia–Romagna coast (Northern Italy) have been analyzed over different periods. In order to assess the local sealevel variability, data from satellite altimetry and tide gauges have been compared over a common time interval (1993–2019), hence disentangling the contribute of vertical land movements. Non–linearity has been also evaluated at the broader scale of the Mediterranean Sea, in order to depict the main variability in geocentric sealevel trends from regional to sub–basin scale. Furthermore, the anthropogenic and natural influence at the river basin scale has been addressed, in order to shed light on the factors inducing the drastic reduction of riverine sediment supply to the Emilia–Romagna coast over the period 1920–2020. The findings of this analysis indicate that the sediment delivery reduction to the coast by rivers has been driven by several anthropogenic processes, acting on various spatiotemporal scales. Moreover, the local absolute sealevel trend is far from linear and appear "contaminated" by the presence of natural oscillations that act at the multi–decadal, quasi–decadal and inter–annual scale, mainly driven by both large–scale climatic modes and variations in local oceanography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis entitled seasonal and interannual variability of sea level and associated surface meteorological parameters at cochin.The interesting aspect of studying sea level variability on different time scales can be attributed to the diversity of its applications.Study of tides could perhaps be the oldest branch of physical oceanography.The thesis is presented in seven chapters. The first chapter gives, apart from a general introduction, a survey of literature on sea level variability on different time scales - tidal, seasonal and interannual (geological scales excluded), with particular emphasis on the work carried out in the Indian waters. The second chapter is devoted to the study of observed tides at Cochin on seasonal and interannual time scales using hourly water level data for the period 1988-1993. The third chapter describes the long-term climatology of some important surface oceanographic and meteorological parameters (at Cochin) which are supposed to affect the sea level. The fourth chapter addresses the problem of seasonal forecasting of the meteorological and oceanographic parameters at Cochin using autoregressive, sinusoidal and exponentially weighted moving average techniques and testing their accuracy with the observed data for the period 1991-1993. The fifth chapter describes the seasonal cycles of sea level and the driving forces at 16 stations along the Indian subcontinent. It also addresses the observed interannual variability of sea level at 15 stations using available multi-annual data sets. The sixth chapter deals with the problem of coastal trapped waves between Cochin and Beypore off the Kerala coast using sea level and atmospheric pressure data sets for the year 1977. The seventh and the last chapter contains the summary and conclusions and future outlook based on this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sea-level variability is characterized by multiple interacting factors described in the Fourth Assessment Report (Bindoff et al., 2007) of the Intergovernmental Panel on Climate Change (IPCC) that act over wide spectra of temporal and spatial scales. In Church et al. (2010) sea-level variability and changes are defined as manifestations of climate variability and change. The European Environmental Agency (EEA) defines sea level as one of most important indicators for monitoring climate change, as it integrates the response of different components of the Earths system and is also affected by anthropogenic contributions (EEA, 2011). The balance between the different sea-level contributions represents an important source of uncertainty, involving stochastic processes that are very difficult to describe and understand in detail, to the point that they are defined as an enigma in Munk (2002). Sea-level rate estimates are affected by all these uncertainties, in particular if we look at possible responses to sea-level contributions to future climate. At the regional scale, lateral fluxes also contribute to sea-level variability, adding complexity to sea-level dynamics. The research strategy adopted in this work to approach such an interesting and challenging topic has been to develop an objective methodology to study sea-level variability at different temporal and spatial scales, applicable in each part of the Mediterranean basin in particular, and in the global ocean in general, using all the best calibrated sources of data (for the Mediterranean): in-situ, remote-sensig and numerical models data. The global objective of this work was to achieve a deep understanding of all of the components of the sea-level signal contributing to sea-level variability, tendency and trend and to quantify them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on a radiocarbon and paleomagnetically dated sediment record from the northern Red Sea and the exceptional sensitivity of the regional changes in the oxygen isotope composition of sea water to the sea-level-dependent water exchange with the Indian Ocean, we provide a new global sea-level reconstruction spanning the last glacial period. The sea-level record has been extracted from the temperature-corrected benthic stable oxygen isotopes using coral-based sea-level data as constraints for the sea-level/oxygen isotope relationship. Although, the general features of this millennial-scale sea-level records have strong similarities to the rather symmetric and gradual Southern Hemisphere climate patterns, we observe, in constrast to previous findings, pronounced sea level rises of up to 25 m to generally correspond with Northern Hemisphere warmings as recorded in Greenland ice-core interstadial intervals whereas sea-level lowstands mostly occur during cold phases. Corroborated by CLIMBER-2 model results, the close connection of millennial-scale sea-level changes to Northern Hemisphere temperature variations indicates a primary climatic control on the mass balance of the major Northern Hemisphere ice sheets and does not require a considerable Antarctic contribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 250-year, high-resolution, multivariate ice core record from LGB65 (70degrees50'07"S, 77degrees04'29"E; 1850 m asl), Princess Elizabeth Land (PEL), is used to investigate sea level pressure (SLP) variability over the southern Indian Ocean (SIO). Empirical orthogonal function (EOF) analysis reveals that the first EOF (EOF1) of the glaciochemical record from LGB65 represents most of the variability in sea salt throughout the 250-year record. EOF1 is negatively correlated (95% confidence level and higher) to instrumental mean sea level pressure (MSLP) at Kerguelen and New Amsterdam islands, SIO. On the basis of comparison with NCEP/NCAR reanalysis, strong correlations were found between sea-salt variations and a quasi-stationary low that lies to the north of Prydz Bay, SIO. Comparison with a 250-year-long summer transpolar index (STPI) inferred from sub-Antarctic tree ring records reveals strong coherency. Decadal-scale SLP variability over SIO suggests shifting of the polar vortex. Prominent decadal-scale deepening of the southern Indian Ocean low (SIOL) exists circa 1790, 1810, 1835, 1860, 1880, 1900, and 1940 A. D., continuously after the 1970s, and prominent weakening circa 1750, 1795, 1825, 1850, 1870, 1890, 1910, and 1955 A. D. The LGB65 sea-salt record is characterized by significant decadal-scale variability with a strong similar to21-year periodic structure (99.9% confidence level). The relationship between LGB65 sea salt and solar irradiance changes shows that this periodicity is possibly the solar Hale cycle ( 22 years).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The middle Miocene delta18O increase represents a fundamental change in earth's climate system due to a major expansion and permanent establishment of the East Antarctic Ice Sheet accompanied by some effect of deepwater cooling. The long-term cooling trend in the middle to late Miocene was superimposed by several punctuated periods of glaciations (Mi-Events) characterized by oxygen isotopic shifts that have been related to the waxing and waning of the Antarctic ice-sheet and bottom water cooling. Here, we present a high-resolution benthic stable oxygen isotope record from ODP Site 1085 located at the southwestern African continental margin that provides a detailed chronology for the middle to late Miocene (13.9-7.3 Ma) climate transition in the eastern South Atlantic. A composite Fe intensity record obtained by XRF core scanning ODP Sites 1085 and 1087 was used to construct an astronomically calibrated chronology based on orbital tuning. The oxygen isotope data exhibit four distinct delta18O excursions, which have astronomical ages of 13.8, 13.2, 11.7, and 10.4 Ma and correspond to the Mi3, Mi4, Mi5, and Mi6 events. A global climate record was extracted from the oxygen isotopic composition. Both long- and short-term variabilities in the climate record are discussed in terms of sea-level and deep-water temperature changes. The oxygen isotope data support a causal link between sequence boundaries traced from the shelf and glacioeustatic changes due to ice-sheet growth. Spectral analysis of the benthic delta18O record shows strong power in the 400-kyr and 100-kyr bands documenting a paleoceanographic response to eccentricity-modulated variations in precession. A spectral peak around 180-kyr might be related to the asymmetry of the obliquity cycle indicating that the response of the dominantly unipolar Antarctic ice-sheet to obliquityinduced variations probably controlled the middle to late Miocene climate system. Maxima in the delta18O record, interpreted as glacial periods, correspond to minima in 100-kyr eccentricity cycle and minima in the 174-kyr obliquity modulation. Strong middle to late Miocene glacial events are associated with 400-kyr eccentricity minima and obliquity modulation minima. Thus, fluctuations in the amplitude of obliquity and eccentricity seem to be the driving force for the middle to late Miocene climate variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Holocene silts (salt marshes) and highest intertidal-supratidal peats are superbly exposed on a 15 kin coastal transect which reveals two laterally extensive units of annually banded silts (Beds 3, 7) associated with three transgressive-regressive silt-peat cycles (early sixth-early fourth millennium BC). Bed 3 in places is concordantly and gradationally related to peats above and below, but in others transgresses older strata. Bed 7 also grades up into peat, but everywhere overlies a discordance. The banding in Bed 3 at three main and two minor sites was resolved and characterized texturally at high-resolution (2.5/5 mm contiguous slices) using laser granulometry (LS230 with PIDS) and a comprehensive scheme of data-assessment. Most of Bed 3 formed very rapidly, at peak values of several tens of millimetres annually, in accordance with modelled effects of sea-level fluctuations on mature marshes (bed concordant and gradational) and on marshes growing up after coastal erosion and retreat (bed with discordant base). Using data from the modern Severn Estuary, the textural contrast within bands, and its variation between bands, points to a variable but overall milder mid-Holocene climate than today. The inter-annual variability affected marsh dynamics, as shown by the behaviour of the finely divided plant tissues present. Given local calibration, the methodology is applicable to other tidal systems with banded silts in Britain and mainland northwest Europe. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simulations of the last 500 yr carried out using the Third Hadley Centre Coupled Ocean-Atmosphere GCM (HadCM3) with anthropogenic and natural (solar and volcanic) forcings have been analyzed. Global-mean surface temperature change during the twentieth century is well reproduced. Simulated contributions to global-mean sea level rise during recent decades due to thermal expansion (the largest term) and to mass loss from glaciers and ice caps agree within uncertainties with observational estimates of these terms, but their sum falls short of the observed rate of sea level rise. This discrepancy has been discussed by previous authors; a completely satisfactory explanation of twentieth-century sea level rise is lacking. The model suggests that the apparent onset of sea level rise and glacier retreat during the first part of the nineteenth century was due to natural forcing. The rate of sea level rise was larger during the twentieth century than during the previous centuries because of anthropogenic forcing, but decreasing natural forcing during the second half of the twentieth century tended to offset the anthropogenic acceleration in the rate. Volcanic eruptions cause rapid falls in sea level, followed by recovery over several decades. The model shows substantially less decadal variability in sea level and its thermal expansion component than twentieth-century observations indicate, either because it does not generate sufficient ocean internal variability, or because the observational analyses overestimate the variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predictions of twenty-first century sea level change show strong regional variation. Regional sea level change observed by satellite altimetry since 1993 is also not spatially homogenous. By comparison with historical and pre-industrial control simulations using the atmosphere–ocean general circulation models (AOGCMs) of the CMIP5 project, we conclude that the observed pattern is generally dominated by unforced (internal generated) variability, although some regions, especially in the Southern Ocean, may already show an externally forced response. Simulated unforced variability cannot explain the observed trends in the tropical Pacific, but we suggest that this is due to inadequate simulation of variability by CMIP5 AOGCMs, rather than evidence of anthropogenic change. We apply the method of pattern scaling to projections of sea level change and show that it gives accurate estimates of future local sea level change in response to anthropogenic forcing as simulated by the AOGCMs under RCP scenarios, implying that the pattern will remain stable in future decades. We note, however, that use of a single integration to evaluate the performance of the pattern-scaling method tends to exaggerate its accuracy. We find that ocean volume mean temperature is generally a better predictor than global mean surface temperature of the magnitude of sea level change, and that the pattern is very similar under the different RCPs for a given model. We determine that the forced signal will be detectable above the noise of unforced internal variability within the next decade globally and may already be detectable in the tropical Atlantic.