1000 resultados para Screw theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel algebraic formulation of the central problem of screw theory, namely the determination of the principal screws of a given system. Using the algebra of dual numbers, it shows that the principal screws can be determined via the solution of a generalised eigenproblem of two real, symmetric matrices. This approach allows the study of the principal screws of the general two-, three-systems associated with a manipulator of arbitrary geometry in terms of closed-form expressions of its architecture and configuration parameters. We also present novel methods for the determination of the principal screws for four-, five-systems which do not require the explicit computation of the reciprocal systems. Principal screws of the systems of different orders are identified from one uniform criterion, namely that the pitches of the principal screws are the extreme values of the pitch.The classical results of screw theory, namely the equations for the cylindroid and the pitch-hyperboloid associated with the two-and three-systems, respectively have been derived within the proposed framework. Algebraic conditions have been derived for some of the special screw systems. The formulation is also illustrated with several examples including two spatial manipulators of serial and parallel architecture, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel algebraic formulation of the central problem of screw theory, namely the determination of the principal screws of a given system. Using the algebra of dual numbers, it shows that the principal screws can be determined via the solution of a generalised eigenproblem of two real, symmetric matrices. This approach allows the study of the principal screws of the general screw systems associated with a manipulator of arbitrary geometry in terms of closed-form expressions of its architecture and configuration parameters. The formulation is illustrated with examples of practical manipulators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SCARA-Tau parallel manipulator was derived with the objective to overcome the limited workspace-to-footprint ratio of the DELTA parallel manipulator while maintaining its many benefits. The SCARA-Tau family has later been extended and a large number of variants have been proposed. In this paper, we analyse four of these variants, which together encompass the main differences between all the proposed SCARA-Tau manipulators. The analysed manipulator variants utilise an identical arrangement of five of the six linkages connecting the actuated arms and the manipulated platform and exhibit the same input-output Jacobian. The normalised reciprocal product between the wrench of the sixth linkage and the twist of the platform occurring without this linkage provides a measure on how effectively the sixth linkage constrains the manipulated platform. A comparison of the manipulator variants with respect to this measure demonstrates each variants suitability for specific applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

在已有制造工艺及标定技术基础上,为进一步改善大型铰接并联六维测力平台的测量精度,本文基于螺旋理论和影响系数原理,引入符号函数建立了Stewart结构大型铰接六维测力平台的摩擦模型。文中提出了关节摩擦对铰接并联六维测力平台测量精度的影响矩阵及I、H类误差表达式,绘制了在不同外载和关节摩擦系数条件下,六维测力平台的I、II类误差曲线,并总结丁关节摩擦和平台自重对测力平台测量精度的影响规律。为具有普通球形铰链人型Stewart平台六维测力下台精度的提高和改善提供了理论基础。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

基于螺旋理论和空间模型理论绘制了Stewart平台型六维力传感器的性能图谱,总结了结构参数对传感器各性能指标的影响规律;在此基础上对大型Stewart平台六维力传感器的结构进行了非线性单目标、多目标优化设计,为具有普通球形铰链大型Stewart平台六维力传感器的设计和优化提供了依据。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

描述了一种基于立体视觉的移动机器人自主导航定位系统。该系统采用双目立体视觉完成环境特征的 3D信息提取 ,实时计算出机器人相对作业目标的位姿 (6D)关系 ,导引移动机器人控制系统按目标导向进行运动。系统在相对位姿计算中采用旋动(Screw)理论 ,将带约束的多变量函数的非线性优化问题转化为线性方程组的最小二乘问题 ,简化了计算复杂性。实验表明 ,这个导航定位系统在定位精度和数据处理速度上均可满足机器人导航的要求。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本文介绍了一种非接触式(LW-1型)机器人重复位姿精度检测系统.该系统采用电涡流传感器作为位置信息传感器.以这种传感器的检测性能为基础,研究设计了相应的传感器测量结构、数学模型和坐标变换求解方法,使系统技术指标及使用性能达到了检测机器人重复位姿精度的实用要求.该系统具有鲁棒性强、设计合理、结构简单、造价低廉等特点,可以满足我国现阶段在机器人学研究和机器人开发应用方面的需求

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, the dimensional synthesis of a spherical Parallel Manipulator (PM) with a -1S kinematic chain is presented. The goal of the synthesis is to find a set of parameters that defines the PM with the best performance in terms of workspace capabilities, dexterity and isotropy. The PM is parametrized in terms of a reference element, and a non-directed search of these parameters is carried out. First, the inverse kinematics and instantaneous kinematics of the mechanism are presented. The latter is found using the screw theory formulation. An algorithm that explores a bounded set of parameters and determines the corresponding value of global indexes is presented. The concepts of a novel global performance index and a compound index are introduced. Simulation results are shown and discussed. The best PMs found in terms of each performance index evaluated are locally analyzed in terms of its workspace and local dexterity. The relationship between the performance of the PM and its parameters is discussed, and a prototype with the best performance in terms of the compound index is presented and analyzed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work it is presented a complete kinematic analysis of the 3PSS-1S parallel mechanism for its implementation as a spherical wrist for a needle insertion guidance robot. The spherical 3PSS-1S mechanism is a low weight and reduced dimension parallel mechanism that allows spherical movements providing the requirements needed for the serial–parallel robotic arm for needle insertion guidance. The solution of its direct kinematic is computed with a numerical method based on the Newton–Raphson formulation and a constraint function of the mechanism. The input–output velocity equation is obtained with the use of screw theory. Three types of singular postures are identified during simulations and verified in the real prototype. The 3PSS-1S can perform pure rotations of ±45°±45°, ±40°±40°, ±60°±60° along the View the MathML sourcex, View the MathML sourcey, View the MathML sourcez axes respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes an approach to solve the inverse kinematics problem of humanoid robots whose construction shows a small but non negligible offset at the hip which prevents any purely analytical solution to be developed. Knowing that a purely numerical solution is not feasible due to variable efficiency problems, the proposed one first neglects the offset presence in order to obtain an approximate “solution” by means of an analytical algorithm based on screw theory, and then uses it as the initial condition of a numerical refining procedure based on the Levenberg‐Marquardt algorithm. In this way, few iterations are needed for any specified attitude, making it possible to implement the algorithm for real‐time applications. As a way to show the algorithm’s implementation, one case of study is considered throughout the paper, represented by the SILO2 humanoid robot.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper introduces a screw theory based method termed constraint and position identification (CPI) approach to synthesize decoupled spatial translational compliant parallel manipulators (XYZ CPMs) with consideration of actuation isolation. The proposed approach is based on a systematic arrangement of rigid stages and compliant modules in a three-legged XYZ CPM system using the constraint spaces and the position spaces of the compliant modules. The constraint spaces and the position spaces are firstly derived based on the screw theory instead of using the rigid-body mechanism design experience. Additionally, the constraint spaces are classified into different constraint combinations, with typical position spaces depicted via geometric entities. Furthermore, the systematic synthesis process based on the constraint combinations and the geometric entities is demonstrated via several examples. Finally, several novel decoupled XYZ CPMs with monolithic configurations are created and verified by finite elements analysis. The present CPI approach enables experts and beginners to synthesize a variety of decoupled XYZ CPMs with consideration of actuation isolation by selecting an appropriate constraint and an optimal position for each of the compliant modules according to a specific application.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerous works have been conducted on modelling basic compliant elements such as wire beams, and closed-form analytical models of most basic compliant elements have been well developed. However, the modelling of complex compliant mechanisms is still a challenging work. This paper proposes a constraint-force-based (CFB) modelling approach to model compliant mechanisms with a particular emphasis on modelling complex compliant mechanisms. The proposed CFB modelling approach can be regarded as an improved free-body- diagram (FBD) based modelling approach, and can be extended to a development of the screw-theory-based design approach. A compliant mechanism can be decomposed into rigid stages and compliant modules. A compliant module can offer elastic forces due to its deformation. Such elastic forces are regarded as variable constraint forces in the CFB modelling approach. Additionally, the CFB modelling approach defines external forces applied on a compliant mechanism as constant constraint forces. If a compliant mechanism is at static equilibrium, all the rigid stages are also at static equilibrium under the influence of the variable and constant constraint forces. Therefore, the constraint force equilibrium equations for all the rigid stages can be obtained, and the analytical model of the compliant mechanism can be derived based on the constraint force equilibrium equations. The CFB modelling approach can model a compliant mechanism linearly and nonlinearly, can obtain displacements of any points of the rigid stages, and allows external forces to be exerted on any positions of the rigid stages. Compared with the FBD based modelling approach, the CFB modelling approach does not need to identify the possible deformed configuration of a complex compliant mechanism to obtain the geometric compatibility conditions and the force equilibrium equations. Additionally, the mathematical expressions in the CFB approach have an easily understood physical meaning. Using the CFB modelling approach, the variable constraint forces of three compliant modules, a wire beam, a four-beam compliant module and an eight-beam compliant module, have been derived in this paper. Based on these variable constraint forces, the linear and non-linear models of a decoupled XYZ compliant parallel mechanism are derived, and verified by FEA simulations and experimental tests.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

 This thesis presents several results regarding the kinematic performance analysis of axis-symmetric parallel mechanisms with closed-loop sub-chains. Screw theory based methods have been utilised to generate new indices, along with a formal procedure, enabling the systematic and complete singularity and motion/force transmission analysis of parallel mechanisms with these closed-loop sub-chains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The density-wave theory of Ramakrishnan and Yussouff is extended to provide a scheme for describing dislocations and other topological defects in crystals. Quantitative calculations are presented for the order-parameter profiles, the atomic configuration, and the free energy of a screw dislocation with Burgers vector b=(a/2, a/2, a/2) in a bcc solid. These calculations are done using a simple parametrization of the direct correlation function and a gradient expansion. It is conventional to express the free energy of the dislocation in a crystal of size R as (λb2/4π)ln(αR/‖b‖), where λ is the shear elastic constant, and α is a measure of the core energy. Our results yield for Na the value α≃1.94a/(‖c1’’‖)1/2 (≃1.85) at the freezing temperature (371 K) and α≃2.48a/(‖c1’’‖)1/2 at 271 K, where c1’’ is the curvature of the first peak of the direct correlation function c(q). Detailed results for the density distribution in the dislocation, particularly the core region, are also presented. These show that the dislocation core has a columnar character. To our knowledge, this study represents the first calculation of dislocation structure, including the core, within the framework of an order-parameter theory and incorporating thermal effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new approach for describing dislocations and other topological defects in crystals, based on the density wave theory of Ramakrishnan and Yussouff is presented. Quantitative calculations are discussed in brief for the order parameter profiles, the atomic configuration and the free energy of a screw dislocation with Burgers vector b = (a/2, a/2,a/2 ) in a bcc solid. Our results for the free energy of the dislocation in a crystal of sizeR, when expressed as (λb 2/4π) ln (αR/|b|) whereλ is the shear elastic constant, yield, for example, the valueα ⋍ 1·85 for sodium at its freezing temperature (371°K). The density distribution in the presence of the dislocation shows that the dislocation core has a columnar character. To our knowledge, this study represents the first calculation of dislocation structure, including the core, within the framework of an order parameter theory incorporating thermal effects.