A constraint and position identification (CPI) approach for the synthesis of decoupled spatial translational compliant parallel manipulators


Autoria(s): Li, Haiyang; Hao, Guangbo
Data(s)

31/05/2016

31/05/2016

24/03/2015

18/02/2015

Resumo

This paper introduces a screw theory based method termed constraint and position identification (CPI) approach to synthesize decoupled spatial translational compliant parallel manipulators (XYZ CPMs) with consideration of actuation isolation. The proposed approach is based on a systematic arrangement of rigid stages and compliant modules in a three-legged XYZ CPM system using the constraint spaces and the position spaces of the compliant modules. The constraint spaces and the position spaces are firstly derived based on the screw theory instead of using the rigid-body mechanism design experience. Additionally, the constraint spaces are classified into different constraint combinations, with typical position spaces depicted via geometric entities. Furthermore, the systematic synthesis process based on the constraint combinations and the geometric entities is demonstrated via several examples. Finally, several novel decoupled XYZ CPMs with monolithic configurations are created and verified by finite elements analysis. The present CPI approach enables experts and beginners to synthesize a variety of decoupled XYZ CPMs with consideration of actuation isolation by selecting an appropriate constraint and an optimal position for each of the compliant modules according to a specific application.

Formato

application/pdf

Identificador

Li, H. and Hao, G. (2015) 'A constraint and position identification (CPI) approach for the synthesis of decoupled spatial translational compliant parallel manipulators', Mechanism and Machine Theory, 90, pp. 59-83. doi: 10.1016/j.mechmachtheory.2015.02.004

90

59

83

0094-114X

http://hdl.handle.net/10468/2654

10.1016/j.mechmachtheory.2015.02.004

Mechanism and Machine Theory

Idioma(s)

en

Publicador

Elsevier B.V.

Relação

http://www.sciencedirect.com/science/article/pii/S0094114X15000324

Direitos

© 2015, Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

http://creativecommons.org/licenses/by-nc-nd/4.0/

Palavras-Chave #Compliant parallel manipulator #Conceptual design #Position space #Constraint space #Screw theory
Tipo

Article (peer-reviewed)