956 resultados para Scheduling optimization
Resumo:
Swarm Intelligence (SI) is a growing research field of Artificial Intelligence (AI). SI is the general term for several computational techniques which use ideas and get inspiration from the social behaviours of insects and of other animals. This paper presents hybridization and combination of different AI approaches, like Bio-Inspired Techniques (BIT), Multi-Agent systems (MAS) and Machine Learning Techniques (ML T). The resulting system is applied to the problem of jobs scheduling to machines on dynamic manufacturing environments.
Resumo:
Scheduling optimization is concerned with the optimal allocation of events to time slots. In this paper, we look at one particular example of scheduling problems - the 2015 Joint Statistical Meetings. We want to assign each session among similar topics to time slots to reduce scheduling conflicts. Chapter 1 briefly talks about the motivation for this example as well as the constraints and the optimality criterion. Chapter 2 proposes use of Latent Dirichlet Allocation (LDA) to identify the topic proportions in each session and talks about the fitting of the model. Chapter 3 translates these ideas into a mathematical formulation and introduces a Greedy Algorithm to minimize conflicts. Chapter 4 demonstrates the improvement of the scheduling with this method.
Resumo:
The first goal of this study is to analyse a real-world multiproduct onshore pipeline system in order to verify its hydraulic configuration and operational feasibility by constructing a simulation model step by step from its elementary building blocks that permits to copy the operation of the real system as precisely as possible. The second goal is to develop this simulation model into a user-friendly tool that one could use to find an “optimal” or “best” product batch schedule for a one year time period. Such a batch schedule could change dynamically as perturbations occur during operation that influence the behaviour of the entire system. The result of the simulation, the ‘best’ batch schedule is the one that minimizes the operational costs in the system. The costs involved in the simulation are inventory costs, interface costs, pumping costs, and penalty costs assigned to any unforeseen situations. The key factor to determine the performance of the simulation model is the way time is represented. In our model an event based discrete time representation is selected as most appropriate for our purposes. This means that the time horizon is divided into intervals of unequal lengths based on events that change the state of the system. These events are the arrival/departure of the tanker ships, the openings and closures of loading/unloading valves of storage tanks at both terminals, and the arrivals/departures of trains/trucks at the Delivery Terminal. In the feasibility study we analyse the system’s operational performance with different Head Terminal storage capacity configurations. For these alternative configurations we evaluated the effect of different tanker ship delay magnitudes on the number of critical events and product interfaces generated, on the duration of pipeline stoppages, the satisfaction of the product demand and on the operative costs. Based on the results and the bottlenecks identified, we propose modifications in the original setup.
Resumo:
This paper presents a Swarm based Cooperation Mechanism for scheduling optimization. We intend to conceptualize real manufacturing systems as interacting autonomous entities in order to support decision making in agile manufacturing environments. Agents coordinate their actions automatically without human supervision considering a common objective – global scheduling solution taking advantages from collective behavior of species through implicit and explicit cooperation. The performance of the cooperation mechanism will be evaluated consider implicit cooperation at first stage through ACS, PSO and ABC algorithms and explicit through cooperation mechanism application.
Resumo:
The large increase of Distributed Generation (DG) in Power Systems (PS) and specially in distribution networks makes the management of distribution generation resources an increasingly important issue. Beyond DG, other resources such as storage systems and demand response must be managed in order to obtain more efficient and “green” operation of PS. More players, such as aggregators or Virtual Power Players (VPP), that operate these kinds of resources will be appearing. This paper proposes a new methodology to solve the distribution network short term scheduling problem in the Smart Grid context. This methodology is based on a Genetic Algorithms (GA) approach for energy resource scheduling optimization and on PSCAD software to obtain realistic results for power system simulation. The paper includes a case study with 99 distributed generators, 208 loads and 27 storage units. The GA results for the determination of the economic dispatch considering the generation forecast, storage management and load curtailment in each period (one hour) are compared with the ones obtained with a Mixed Integer Non-Linear Programming (MINLP) approach.
Resumo:
The paper introduces an approach to solve the problem of generating a sequence of jobs that minimizes the total weighted tardiness for a set of jobs to be processed in a single machine. An Ant Colony System based algorithm is validated with benchmark problems available in the OR library. The obtained results were compared with the best available results and were found to be nearer to the optimal. The obtained computational results allowed concluding on their efficiency and effectiveness.
Resumo:
Swarm Intelligence generally refers to a problem-solving ability that emerges from the interaction of simple information-processing units. The concept of Swarm suggests multiplicity, distribution, stochasticity, randomness, and messiness. The concept of Intelligence suggests that problem-solving approach is successful considering learning, creativity, cognition capabilities. This paper introduces some of the theoretical foundations, the biological motivation and fundamental aspects of swarm intelligence based optimization techniques such Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Artificial Bees Colony (ABC) algorithms for scheduling optimization.
Resumo:
Most current-generation Wireless Sensor Network (WSN) nodes are equipped with multiple sensors of various types, and therefore support for multi-tasking and multiple concurrent applications is becoming increasingly common. This trend has been fostering the design of WSNs allowing several concurrent users to deploy applications with dissimilar requirements. In this paper, we extend the advantages of a holistic programming scheme by designing a novel compiler-assisted scheduling approach (called REIS) able to identify and eliminate redundancies across applications. To achieve this useful high-level optimization, we model each user application as a linear sequence of executable instructions. We show how well-known string-matching algorithms such as the Longest Common Subsequence (LCS) and the Shortest Common Super-sequence (SCS) can be used to produce an optimal merged monolithic sequence of the deployed applications that takes into account embedded scheduling information. We show that our approach can help in achieving about 60% average energy savings in processor usage compared to the normal execution of concurrent applications.
Resumo:
We address the performance optimization problem in a single-stationmulticlass queueing network with changeover times by means of theachievable region approach. This approach seeks to obtainperformance bounds and scheduling policies from the solution of amathematical program over a relaxation of the system's performanceregion. Relaxed formulations (including linear, convex, nonconvexand positive semidefinite constraints) of this region are developedby formulating equilibrium relations satisfied by the system, withthe help of Palm calculus. Our contributions include: (1) newconstraints formulating equilibrium relations on server dynamics;(2) a flow conservation interpretation of the constraintspreviously derived by the potential function method; (3) newpositive semidefinite constraints; (4) new work decomposition lawsfor single-station multiclass queueing networks, which yield newconvex constraints; (5) a unified buffer occupancy method ofperformance analysis obtained from the constraints; (6) heuristicscheduling policies from the solution of the relaxations.
Resumo:
In process industries, make-and-pack production is used to produce food and beverages, chemicals, and metal products, among others. This type of production process allows the fabrication of a wide range of products in relatively small amounts using the same equipment. In this article, we consider a real-world production process (cf. Honkomp et al. 2000. The curse of reality – why process scheduling optimization problems are diffcult in practice. Computers & Chemical Engineering, 24, 323–328.) comprising sequence-dependent changeover times, multipurpose storage units with limited capacities, quarantine times, batch splitting, partial equipment connectivity, and transfer times. The planning problem consists of computing a production schedule such that a given demand of packed products is fulfilled, all technological constraints are satisfied, and the production makespan is minimised. None of the models in the literature covers all of the technological constraints that occur in such make-and-pack production processes. To close this gap, we develop an efficient mixed-integer linear programming model that is based on a continuous time domain and general-precedence variables. We propose novel types of symmetry-breaking constraints and a preprocessing procedure to improve the model performance. In an experimental analysis, we show that small- and moderate-sized instances can be solved to optimality within short CPU times.
Resumo:
“Availability” is the terminology used in asset intensive industries such as petrochemical and hydrocarbons processing to describe the readiness of equipment, systems or plants to perform their designed functions. It is a measure to suggest a facility’s capability of meeting targeted production in a safe working environment. Availability is also vital as it encompasses reliability and maintainability, allowing engineers to manage and operate facilities by focusing on one performance indicator. These benefits make availability a very demanding and highly desired area of interest and research for both industry and academia. In this dissertation, new models, approaches and algorithms have been explored to estimate and manage the availability of complex hydrocarbon processing systems. The risk of equipment failure and its effect on availability is vital in the hydrocarbon industry, and is also explored in this research. The importance of availability encouraged companies to invest in this domain by putting efforts and resources to develop novel techniques for system availability enhancement. Most of the work in this area is focused on individual equipment compared to facility or system level availability assessment and management. This research is focused on developing an new systematic methods to estimate system availability. The main focus areas in this research are to address availability estimation and management through physical asset management, risk-based availability estimation strategies, availability and safety using a failure assessment framework, and availability enhancement using early equipment fault detection and maintenance scheduling optimization.
Resumo:
Les travaux de ce mémoire traitent du problème d’ordonnancement et d’optimisation de la production dans un environnement de plusieurs machines en présence de contraintes sur les ressources matérielles dans une usine d’extrusion plastique. La minimisation de la somme pondérée des retards est le critère économique autour duquel s’articule cette étude car il représente un critère très important pour le respect des délais. Dans ce mémoire, nous proposons une approche exacte via une formulation mathématique capable des donner des solutions optimales et une approche heuristique qui repose sur deux méthodes de construction de solution sérielle et parallèle et un ensemble de méthodes de recherche dans le voisinage (recuit-simulé, recherche avec tabous, GRASP et algorithme génétique) avec cinq variantes de voisinages. Pour être en totale conformité avec la réalité de l’industrie du plastique, nous avons pris en considération certaines caractéristiques très fréquentes telles que les temps de changement d’outils sur les machines lorsqu’un ordre de fabrication succède à un autre sur une machine donnée. La disponibilité des extrudeuses et des matrices d’extrusion représente le goulot d’étranglement dans ce problème d’ordonnancement. Des séries d’expérimentations basées sur des problèmes tests ont été effectuées pour évaluer la qualité de la solution obtenue avec les différents algorithmes proposés. L’analyse des résultats a démontré que les méthodes de construction de solution ne sont pas suffisantes pour assurer de bons résultats et que les méthodes de recherche dans le voisinage donnent des solutions de très bonne qualité. Le choix du voisinage est important pour raffiner la qualité de la solution obtenue. Mots-clés : ordonnancement, optimisation, extrusion, formulation mathématique, heuristique, recuit-simulé, recherche avec tabous, GRASP, algorithme génétique
Resumo:
This paper is on the problem of short-term hydro scheduling, particularly concerning head-dependent reservoirs under competitive environment. We propose a new nonlinear optimization method to consider hydroelectric power generation as a function of water discharge and also of the head. Head-dependency is considered on short-term hydro scheduling in order to obtain more realistic and feasible results. The proposed method has been applied successfully to solve a case study based on one of the main Portuguese cascaded hydro systems, providing a higher profit at a negligible additional computation time in comparison with a linear optimization method that ignores head-dependency.
Resumo:
This paper addresses the problem of energy resources management using modern metaheuristics approaches, namely Particle Swarm Optimization (PSO), New Particle Swarm Optimization (NPSO) and Evolutionary Particle Swarm Optimization (EPSO). The addressed problem in this research paper is intended for aggregators’ use operating in a smart grid context, dealing with Distributed Generation (DG), and gridable vehicles intelligently managed on a multi-period basis according to its users’ profiles and requirements. The aggregator can also purchase additional energy from external suppliers. The paper includes a case study considering a 30 kV distribution network with one substation, 180 buses and 90 load points. The distribution network in the case study considers intense penetration of DG, including 116 units from several technologies, and one external supplier. A scenario of 6000 EVs for the given network is simulated during 24 periods, corresponding to one day. The results of the application of the PSO approaches to this case study are discussed deep in the paper.
Resumo:
Metaheuristics performance is highly dependent of the respective parameters which need to be tuned. Parameter tuning may allow a larger flexibility and robustness but requires a careful initialization. The process of defining which parameters setting should be used is not obvious. The values for parameters depend mainly on the problem, the instance to be solved, the search time available to spend in solving the problem, and the required quality of solution. This paper presents a learning module proposal for an autonomous parameterization of Metaheuristics, integrated on a Multi-Agent System for the resolution of Dynamic Scheduling problems. The proposed learning module is inspired on Autonomic Computing Self-Optimization concept, defining that systems must continuously and proactively improve their performance. For the learning implementation it is used Case-based Reasoning, which uses previous similar data to solve new cases. In the use of Case-based Reasoning it is assumed that similar cases have similar solutions. After a literature review on topics used, both AutoDynAgents system and Self-Optimization module are described. Finally, a computational study is presented where the proposed module is evaluated, obtained results are compared with previous ones, some conclusions are reached, and some future work is referred. It is expected that this proposal can be a great contribution for the self-parameterization of Metaheuristics and for the resolution of scheduling problems on dynamic environments.