951 resultados para Scaling limit
Resumo:
We consider the two-dimensional version of a drainage network model introduced ill Gangopadhyay, Roy and Sarkar (2004), and show that the appropriately rescaled family of its paths converges in distribution to the Brownian web. We do so by verifying the convergence criteria proposed in Fontes, Isopi, Newman and Ravishankar (2002).
Resumo:
The usefulness of a scale-independent approach to identify Efimov states in three-body systems is shown by comparing such an approach with a realistic calculation in the case of three helium atoms. We show that the scaling limit is realized in practice in this case, and suggest its application to study other similar systems, including the case where two kinds of atoms are mixed. We also consider the observed large scattering length of the Rb-87 dimer to estimate the critical value of the ground-state energy of the corresponding trimer (greater than or equal to 1.5 mK), in order to allow for one Efimov state above the ground state.
Resumo:
We show that a scaling limit approach, previously applied in three-body low-energy nuclear physics, is realized for the first excited state of He-4 trimer. The present result suggests that such approach has a wider application.
Resumo:
With perspective to applications of cold-atom systems, some aspects of few-body physics at very low energies will be reviewed. By exploring the possibilities of varying the two-body interaction via the Feshbach resonance mechanism, some recent results are reported for condensed systems in optical lattices.
Resumo:
The occurrence of a new limit cycle in few-body physics, expressing a universal scaling function relating the binding energies of two successive tetramer states, is revealed by considering a renormalized zero-range two-body interaction in bound state of four identical bosons. The tetramer energy spectrum is obtained by adding a boson to an Efimov bound state with energy B-3 in the unitary limit (for zero two-body binding energy or infinite two-body scattering length). Each excited N-th tetramer energy B-4((N)) is shown to slide along a scaling function as a short-range four-body scale is changed, emerging from the 3+1 threshold for a universal ratio B-4((N))/B-3 = 4.6, which does not depend on N. The new scale can also be revealed by a resonance in the atom-trimer recombination process.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Natural scales determine the physics of quantum few-body systems with short-range interactions. Thus, the scaling limit is found when the ratio between the scattering length and the interaction range tends to infinity, while the ratio between the physical scales are kept fixed. From the formal point of view, the relation of the scaling limit and the renormalization aspects of a few-body model with a zero-range interaction, through the derivation of subtracted three-body T-matrix equations that are renormalization-group invariant.
Resumo:
The fixed-slope correlation between tetramer and trimer binding energies, observed by Tjon in the context of nuclear physics, is mainly a manifestation of the dominance of the two-nucleon force in the nuclear potential, which makes the four-body scale on the order of the three-body one. In a more general four-boson case, the correlation between tetramer and trimer binding energies has a non-fixed slope, which expresses the dependence on the new scale. The associated scaling function generates a family of Tjon lines. This conclusion relies on a recent study with weakly-bound four identical bosons, within a renormalized zero-range Faddeev-Yakubovsky formalism. © 2012 Springer-Verlag.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Planar curves arise naturally as interfaces between two regions of the plane. An important part of statistical physics is the study of lattice models. This thesis is about the interfaces of 2D lattice models. The scaling limit is an infinite system limit which is taken by letting the lattice mesh decrease to zero. At criticality, the scaling limit of an interface is one of the SLE curves (Schramm-Loewner evolution), introduced by Oded Schramm. This family of random curves is parametrized by a real variable, which determines the universality class of the model. The first and the second paper of this thesis study properties of SLEs. They contain two different methods to study the whole SLE curve, which is, in fact, the most interesting object from the statistical physics point of view. These methods are applied to study two symmetries of SLE: reversibility and duality. The first paper uses an algebraic method and a representation of the Virasoro algebra to find common martingales to different processes, and that way, to confirm the symmetries for polynomial expected values of natural SLE data. In the second paper, a recursion is obtained for the same kind of expected values. The recursion is based on stationarity of the law of the whole SLE curve under a SLE induced flow. The third paper deals with one of the most central questions of the field and provides a framework of estimates for describing 2D scaling limits by SLE curves. In particular, it is shown that a weak estimate on the probability of an annulus crossing implies that a random curve arising from a statistical physics model will have scaling limits and those will be well-described by Loewner evolutions with random driving forces.
Resumo:
We have measured inclusive electron-scattering cross sections for targets of ^(4)He, C, Al, Fe, and Au, for kinematics spanning the quasi-elastic peak, with squared, four momentum transfers (q^2) between 0.23 and 2.89 (GeV/c)^2. Additional data were measured for Fe with q^2's up to 3.69 (GeV/c)^2 These cross sections were analyzed for the y-scaling behavior expected from a simple, impulse-approximation model, and are found to approach a scaling limit at the highest q^2's. The q^2 approach to scaling is compared with a calculation for infinite nuclear matter, and relationships between the scaling function and nucleon momentum distributions are discussed. Deviations from perfect scaling are used to set limits on possible changes in the size of nucleons inside the nucleus.
Resumo:
Les modèles sur réseau comme ceux de la percolation, d’Ising et de Potts servent à décrire les transitions de phase en deux dimensions. La recherche de leur solution analytique passe par le calcul de la fonction de partition et la diagonalisation de matrices de transfert. Au point critique, ces modèles statistiques bidimensionnels sont invariants sous les transformations conformes et la construction de théories des champs conformes rationnelles, limites continues des modèles statistiques, permet un calcul de la fonction de partition au point critique. Plusieurs chercheurs pensent cependant que le paradigme des théories des champs conformes rationnelles peut être élargi pour inclure les modèles statistiques avec des matrices de transfert non diagonalisables. Ces modèles seraient alors décrits, dans la limite d’échelle, par des théories des champs logarithmiques et les représentations de l’algèbre de Virasoro intervenant dans la description des observables physiques seraient indécomposables. La matrice de transfert de boucles D_N(λ, u), un élément de l’algèbre de Temperley- Lieb, se manifeste dans les théories physiques à l’aide des représentations de connectivités ρ (link modules). L’espace vectoriel sur lequel agit cette représentation se décompose en secteurs étiquetés par un paramètre physique, le nombre d de défauts. L’action de cette représentation ne peut que diminuer ce nombre ou le laisser constant. La thèse est consacrée à l’identification de la structure de Jordan de D_N(λ, u) dans ces représentations. Le paramètre β = 2 cos λ = −(q + 1/q) fixe la théorie : β = 1 pour la percolation et √2 pour le modèle d’Ising, par exemple. Sur la géométrie du ruban, nous montrons que D_N(λ, u) possède les mêmes blocs de Jordan que F_N, son plus haut coefficient de Fourier. Nous étudions la non diagonalisabilité de F_N à l’aide des divergences de certaines composantes de ses vecteurs propres, qui apparaissent aux valeurs critiques de λ. Nous prouvons dans ρ(D_N(λ, u)) l’existence de cellules de Jordan intersectorielles, de rang 2 et couplant des secteurs d, d′ lorsque certaines contraintes sur λ, d, d′ et N sont satisfaites. Pour le modèle de polymères denses critique (β = 0) sur le ruban, les valeurs propres de ρ(D_N(λ, u)) étaient connues, mais les dégénérescences conjecturées. En construisant un isomorphisme entre les modules de connectivités et un sous-espace des modules de spins du modèle XXZ en q = i, nous prouvons cette conjecture. Nous montrons aussi que la restriction de l’hamiltonien de boucles à un secteur donné est diagonalisable et trouvons la forme de Jordan exacte de l’hamiltonien XX, non triviale pour N pair seulement. Enfin nous étudions la structure de Jordan de la matrice de transfert T_N(λ, ν) pour des conditions aux frontières périodiques. La matrice T_N(λ, ν) a des blocs de Jordan intrasectoriels et intersectoriels lorsque λ = πa/b, et a, b ∈ Z×. L’approche par F_N admet une généralisation qui permet de diagnostiquer des cellules intersectorielles dont le rang excède 2 dans certains cas et peut croître indéfiniment avec N. Pour les blocs de Jordan intrasectoriels, nous montrons que les représentations de connectivités sur le cylindre et celles du modèle XXZ sont isomorphes sauf pour certaines valeurs précises de q et du paramètre de torsion v. En utilisant le comportement de la transformation i_N^d dans un voisinage des valeurs critiques (q_c, v_c), nous construisons explicitement des vecteurs généralisés de Jordan de rang 2 et discutons l’existence de blocs de Jordan intrasectoriels de plus haut rang.
Resumo:
We consider the relation between so called continuous localization models—i.e. non-linear stochastic Schrödinger evolutions—and the discrete GRW-model of wave function collapse. The former can be understood as scaling limit of the GRW process. The proof relies on a stochastic Trotter formula, which is of interest in its own right. Our Trotter formula also allows to complement results on existence theory of stochastic Schrödinger evolutions by Holevo and Mora/Rebolledo.
Resumo:
We consider bipartitions of one-dimensional extended systems whose probability distribution functions describe stationary states of stochastic models. We define estimators of the information shared between the two subsystems. If the correlation length is finite, the estimators stay finite for large system sizes. If the correlation length diverges, so do the estimators. The definition of the estimators is inspired by information theory. We look at several models and compare the behaviors of the estimators in the finite-size scaling limit. Analytical and numerical methods as well as Monte Carlo simulations are used. We show how the finite-size scaling functions change for various phase transitions, including the case where one has conformal invariance.