373 resultados para Sasakian manifolds


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate some topological properties, in particular formality, of compact Sasakian manifolds. Answering some questions raised by Boyer and Galicki, we prove that all higher (than three) Massey products on any compact Sasakian manifold vanish. Hence, higher Massey products do obstruct Sasakian structures. Using this, we produce a method of constructing simply connected K-contact non-Sasakian manifolds. On the other hand, for every n > 3, we exhibit the first examples of simply connected compact Sasakian manifolds of dimension 2n + 1 that are non-formal. They are non-formal because they have a non-zero triple Massey product. We also prove that arithmetic lattices in some simple Lie groups cannot be the fundamental group of a compact Sasakian manifold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 53C15, 53C40, 53C42.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 53C40, 53C25.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present solutions of the Yang–Mills equation on cylinders R×G/HR×G/H over coset spaces of odd dimension 2m+12m+1 with Sasakian structure. The gauge potential is assumed to be SU(m)SU(m)-equivariant, parameterized by two real, scalar-valued functions. Yang–Mills theory with torsion in this setup reduces to the Newtonian mechanics of a point particle moving in R2R2 under the influence of an inverted potential. We analyze the critical points of this potential and present an analytic as well as several numerical finite-action solutions. Apart from the Yang–Mills solutions that constitute SU(m)SU(m)-equivariant instanton configurations, we construct periodic sphaleron solutions on S1×G/HS1×G/H and dyon solutions on iR×G/HiR×G/H.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We prove that the dimension of the 1-nullity distribution N(1) on a closed Sasakian manifold M of rankl is at least equal to 2l−1 provided that M has an isolated closed characteristic. The result is then used to provide some examples of k-contact manifolds which are not Sasakian. On a closed, 2n+1-dimensional Sasakian manifold of positive bisectional curvature, we show that either the dimension of N(1) is less than or equal to n+1 or N(1) is the entire tangent bundle TM. In the latter case, the Sasakian manifold Mis isometric to a quotient of the Euclidean sphere under a finite group of isometries. We also point out some interactions between k-nullity, Weinstein conjecture, and minimal unit vector fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider SU(3)-equivariant dimensional reduction of Yang Mills theory over certain cyclic orbifolds of the 5-sphere which are Sasaki-Einstein manifolds. We obtain new quiver gauge theories extending those induced via reduction over the leaf spaces of the characteristic foliation of the Sasaki-Einstein structure, which are projective planes. We describe the Higgs branches of these quiver gauge theories as moduli spaces of spherically symmetric instantons which are SU(3)-equivariant solutions to the Hermitian Yang-Mills equations on the associated Calabi-Yau cones, and further compare them to moduli spaces of translationally-invariant instantons on the cones. We provide an explicit unified construction of these moduli spaces as Kahler quotients and show that they have the same cyclic orbifold singularities as the cones over the lens 5-spaces. (C) 2015 The Authors. Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using sculpture and drawing as my primary methods of investigation, this research explores ways of shifting the emphasis of my creative visual arts practice from object to process whilst still maintaining a primacy of material outcomes. My motivation was to locate ways of developing a sustained practice shaped as much by new works, as by a creative flow between works. I imagined a practice where a logic of structure within discrete forms and a logic of the broader practice might be developed as mutually informed processes. Using basic structural components of multiple wooden curves and linear modes of deployment – in both sculptures and drawings – I have identified both emergence theory and the image of rhizomic growth (Deleuze and Guattari, 1987) as theoretically integral to this imagining of a creative practice, both in terms of critiquing and developing works. Whilst I adopt a formalist approach for this exegesis, the emergence and rhizome models allow it to work as a critique of movement, of becoming and changing, rather than merely a formalism of static structure. In these models, therefore, I have identified a formal approach that can be applied not only to objects, but to practice over time. The thorough reading and application of these ontological models (emergence and rhizome) to visual arts practice, in terms of processes, objects and changes, is the primary contribution of this thesis. The works that form the major component of the research develop, reflect and embody these notions of movement and change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modelling video sequences by subspaces has recently shown promise for recognising human actions. Subspaces are able to accommodate the effects of various image variations and can capture the dynamic properties of actions. Subspaces form a non-Euclidean and curved Riemannian manifold known as a Grassmann manifold. Inference on manifold spaces usually is achieved by embedding the manifolds in higher dimensional Euclidean spaces. In this paper, we instead propose to embed the Grassmann manifolds into reproducing kernel Hilbert spaces and then tackle the problem of discriminant analysis on such manifolds. To achieve efficient machinery, we propose graph-based local discriminant analysis that utilises within-class and between-class similarity graphs to characterise intra-class compactness and inter-class separability, respectively. Experiments on KTH, UCF Sports, and Ballet datasets show that the proposed approach obtains marked improvements in discrimination accuracy in comparison to several state-of-the-art methods, such as the kernel version of affine hull image-set distance, tensor canonical correlation analysis, spatial-temporal words and hierarchy of discriminative space-time neighbourhood features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances suggest that encoding images through Symmetric Positive Definite (SPD) matrices and then interpreting such matrices as points on Riemannian manifolds can lead to increased classification performance. Taking into account manifold geometry is typically done via (1) embedding the manifolds in tangent spaces, or (2) embedding into Reproducing Kernel Hilbert Spaces (RKHS). While embedding into tangent spaces allows the use of existing Euclidean-based learning algorithms, manifold shape is only approximated which can cause loss of discriminatory information. The RKHS approach retains more of the manifold structure, but may require non-trivial effort to kernelise Euclidean-based learning algorithms. In contrast to the above approaches, in this paper we offer a novel solution that allows SPD matrices to be used with unmodified Euclidean-based learning algorithms, with the true manifold shape well-preserved. Specifically, we propose to project SPD matrices using a set of random projection hyperplanes over RKHS into a random projection space, which leads to representing each matrix as a vector of projection coefficients. Experiments on face recognition, person re-identification and texture classification show that the proposed approach outperforms several recent methods, such as Tensor Sparse Coding, Histogram Plus Epitome, Riemannian Locality Preserving Projection and Relational Divergence Classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in computer vision and machine learning suggest that a wide range of problems can be addressed more appropriately by considering non-Euclidean geometry. In this paper we explore sparse dictionary learning over the space of linear subspaces, which form Riemannian structures known as Grassmann manifolds. To this end, we propose to embed Grassmann manifolds into the space of symmetric matrices by an isometric mapping, which enables us to devise a closed-form solution for updating a Grassmann dictionary, atom by atom. Furthermore, to handle non-linearity in data, we propose a kernelised version of the dictionary learning algorithm. Experiments on several classification tasks (face recognition, action recognition, dynamic texture classification) show that the proposed approach achieves considerable improvements in discrimination accuracy, in comparison to state-of-the-art methods such as kernelised Affine Hull Method and graph-embedding Grassmann discriminant analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we demonstrate that the distribution of Wolfram classes within a cellular automata rule space in the triangular tessellation is not consistent across different topological general. Using a statistical mechanics approach, cellular automata dynamical classes were approximated for cellular automata defined on genus-0, genus-1 and genus-2 2-manifolds. A distribution-free equality test for empirical distributions was applied to identify cases in which Wolfram classes were distributed differently across topologies. This result implies that global structure and local dynamics contribute to the long term evolution of cellular automata.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that a closed orientable Riemannian n-manifold, n >= 5, with positive isotropic curvature and free fundamental group is homeomorphic to the connected sum of copies of Sn-1 x S-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This PhD Thesis is about certain infinite-dimensional Grassmannian manifolds that arise naturally in geometry, representation theory and mathematical physics. From the physics point of view one encounters these infinite-dimensional manifolds when trying to understand the second quantization of fermions. The many particle Hilbert space of the second quantized fermions is called the fermionic Fock space. A typical element of the fermionic Fock space can be thought to be a linear combination of the configurations m particles and n anti-particles . Geometrically the fermionic Fock space can be constructed as holomorphic sections of a certain (dual)determinant line bundle lying over the so called restricted Grassmannian manifold, which is a typical example of an infinite-dimensional Grassmannian manifold one encounters in QFT. The construction should be compared with its well-known finite-dimensional analogue, where one realizes an exterior power of a finite-dimensional vector space as the space of holomorphic sections of a determinant line bundle lying over a finite-dimensional Grassmannian manifold. The connection with infinite-dimensional representation theory stems from the fact that the restricted Grassmannian manifold is an infinite-dimensional homogeneous (Kähler) manifold, i.e. it is of the form G/H where G is a certain infinite-dimensional Lie group and H its subgroup. A central extension of G acts on the total space of the dual determinant line bundle and also on the space its holomorphic sections; thus G admits a (projective) representation on the fermionic Fock space. This construction also induces the so called basic representation for loop groups (of compact groups), which in turn are vitally important in string theory / conformal field theory. The Thesis consists of three chapters: the first chapter is an introduction to the backround material and the other two chapters are individually written research articles. The first article deals in a new way with the well-known question in Yang-Mills theory, when can one lift the action of the gauge transformation group on the space of connection one forms to the total space of the Fock bundle in a compatible way with the second quantized Dirac operator. In general there is an obstruction to this (called the Mickelsson-Faddeev anomaly) and various geometric interpretations for this anomaly, using such things as group extensions and bundle gerbes, have been given earlier. In this work we give a new geometric interpretation for the Faddeev-Mickelsson anomaly in terms of differentiable gerbes (certain sheaves of categories) and central extensions of Lie groupoids. The second research article deals with the question how to define a Dirac-like operator on the restricted Grassmannian manifold, which is an infinite-dimensional space and hence not in the landscape of standard Dirac operator theory. The construction relies heavily on infinite-dimensional representation theory and one of the most technically demanding challenges is to be able to introduce proper normal orderings for certain infinite sums of operators in such a way that all divergences will disappear and the infinite sum will make sense as a well-defined operator acting on a suitable Hilbert space of spinors. This research article was motivated by a more extensive ongoing project to construct twisted K-theory classes in Yang-Mills theory via a Dirac-like operator on the restricted Grassmannian manifold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove that if (M-n, g), n >= 4, is a compact, orientable, locally irreducible Riemannian manifold with nonnegative isotropic curvature,then one of the following possibilities hold: (i) M admits a metric with positive isotropic curvature. (ii) (M, g) is isometric to a locally symmetric space. (iii) (M, g) is Kahler and biholomorphic to CPn/2. (iv) (M, g) is quaternionic-Kahler. This is implied by the following result: Let (M-2n, g) be a compact, locally irreducible Kahler manifold with nonnegative isotropic curvature. Then either M is biholomorphic to CPn or isometric to a compact Hermitian symmetric space. This answers a question of Micallef and Wang in the affirmative. The proof is based on the recent work of Brendle and Schoen on the Ricci flow.