916 resultados para Sampling schemes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We reconsider the theory of the linear response of non-equilibrium steady states to perturbations. We �rst show that by using a general functional decomposition for space-time dependent forcings, we can de�ne elementary susceptibilities that allow to construct the response of the system to general perturbations. Starting from the de�nition of SRB measure, we then study the consequence of taking di�erent sampling schemes for analysing the response of the system. We show that only a speci�c choice of the time horizon for evaluating the response of the system to a general time-dependent perturbation allows to obtain the formula �rst presented by Ruelle. We also discuss the special case of periodic perturbations, showing that when they are taken into consideration the sampling can be �ne-tuned to make the de�nition of the correct time horizon immaterial. Finally, we discuss the implications of our results in terms of strategies for analyzing the outputs of numerical experiments by providing a critical review of a formula proposed by Reick.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of developing efficient sampling schemes for multiband sparse signals. Previous results on multicoset sampling implementations that lead to universal sampling patterns (which guarantee perfect reconstruction), are based on a set of appropriate interleaved analog to digital converters, all of them operating at the same sampling frequency. In this paper we propose an alternative multirate synchronous implementation of multicoset codes, that is, all the analog to digital converters in the sampling scheme operate at different sampling frequencies, without need of introducing any delay. The interleaving is achieved through the usage of different rates, whose sum is significantly lower than the Nyquist rate of the multiband signal. To obtain universal patterns the sampling matrix is formulated and analyzed. Appropriate choices of the parameters, that is the block length and the sampling rates, are also proposed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sampling strategies are developed based on the idea of ranked set sampling (RSS) to increase efficiency and therefore to reduce the cost of sampling in fishery research. The RSS incorporates information on concomitant variables that are correlated with the variable of interest in the selection of samples. For example, estimating a monitoring survey abundance index would be more efficient if the sampling sites were selected based on the information from previous surveys or catch rates of the fishery. We use two practical fishery examples to demonstrate the approach: site selection for a fishery-independent monitoring survey in the Australian northern prawn fishery (NPF) and fish age prediction by simple linear regression modelling a short-lived tropical clupeoid. The relative efficiencies of the new designs were derived analytically and compared with the traditional simple random sampling (SRS). Optimal sampling schemes were measured by different optimality criteria. For the NPF monitoring survey, the efficiency in terms of variance or mean squared errors of the estimated mean abundance index ranged from 114 to 199% compared with the SRS. In the case of a fish ageing study for Tenualosa ilisha in Bangladesh, the efficiency of age prediction from fish body weight reached 140%.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This article is motivated by a lung cancer study where a regression model is involved and the response variable is too expensive to measure but the predictor variable can be measured easily with relatively negligible cost. This situation occurs quite often in medical studies, quantitative genetics, and ecological and environmental studies. In this article, by using the idea of ranked-set sampling (RSS), we develop sampling strategies that can reduce cost and increase efficiency of the regression analysis for the above-mentioned situation. The developed method is applied retrospectively to a lung cancer study. In the lung cancer study, the interest is to investigate the association between smoking status and three biomarkers: polyphenol DNA adducts, micronuclei, and sister chromatic exchanges. Optimal sampling schemes with different optimality criteria such as A-, D-, and integrated mean square error (IMSE)-optimality are considered in the application. With set size 10 in RSS, the improvement of the optimal schemes over simple random sampling (SRS) is great. For instance, by using the optimal scheme with IMSE-optimality, the IMSEs of the estimated regression functions for the three biomarkers are reduced to about half of those incurred by using SRS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We propose data acquisition from continuous-time signals belonging to the class of real-valued trigonometric polynomials using an event-triggered sampling paradigm. The sampling schemes proposed are: level crossing (LC), close to extrema LC, and extrema sampling. Analysis of robustness of these schemes to jitter, and bandpass additive gaussian noise is presented. In general these sampling schemes will result in non-uniformly spaced sample instants. We address the issue of signal reconstruction from the acquired data-set by imposing structure of sparsity on the signal model to circumvent the problem of gap and density constraints. The recovery performance is contrasted amongst the various schemes and with random sampling scheme. In the proposed approach, both sampling and reconstruction are non-linear operations, and in contrast to random sampling methodologies proposed in compressive sensing these techniques may be implemented in practice with low-power circuitry.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A central objective in signal processing is to infer meaningful information from a set of measurements or data. While most signal models have an overdetermined structure (the number of unknowns less than the number of equations), traditionally very few statistical estimation problems have considered a data model which is underdetermined (number of unknowns more than the number of equations). However, in recent times, an explosion of theoretical and computational methods have been developed primarily to study underdetermined systems by imposing sparsity on the unknown variables. This is motivated by the observation that inspite of the huge volume of data that arises in sensor networks, genomics, imaging, particle physics, web search etc., their information content is often much smaller compared to the number of raw measurements. This has given rise to the possibility of reducing the number of measurements by down sampling the data, which automatically gives rise to underdetermined systems.

In this thesis, we provide new directions for estimation in an underdetermined system, both for a class of parameter estimation problems and also for the problem of sparse recovery in compressive sensing. There are two main contributions of the thesis: design of new sampling and statistical estimation algorithms for array processing, and development of improved guarantees for sparse reconstruction by introducing a statistical framework to the recovery problem.

We consider underdetermined observation models in array processing where the number of unknown sources simultaneously received by the array can be considerably larger than the number of physical sensors. We study new sparse spatial sampling schemes (array geometries) as well as propose new recovery algorithms that can exploit priors on the unknown signals and unambiguously identify all the sources. The proposed sampling structure is generic enough to be extended to multiple dimensions as well as to exploit different kinds of priors in the model such as correlation, higher order moments, etc.

Recognizing the role of correlation priors and suitable sampling schemes for underdetermined estimation in array processing, we introduce a correlation aware framework for recovering sparse support in compressive sensing. We show that it is possible to strictly increase the size of the recoverable sparse support using this framework provided the measurement matrix is suitably designed. The proposed nested and coprime arrays are shown to be appropriate candidates in this regard. We also provide new guarantees for convex and greedy formulations of the support recovery problem and demonstrate that it is possible to strictly improve upon existing guarantees.

This new paradigm of underdetermined estimation that explicitly establishes the fundamental interplay between sampling, statistical priors and the underlying sparsity, leads to exciting future research directions in a variety of application areas, and also gives rise to new questions that can lead to stand-alone theoretical results in their own right.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The sampling scheme is essential in the investigation of the spatial variability of soil properties in Soil Science studies. The high costs of sampling schemes optimized with additional sampling points for each physical and chemical soil property, prevent their use in precision agriculture. The purpose of this study was to obtain an optimal sampling scheme for physical and chemical property sets and investigate its effect on the quality of soil sampling. Soil was sampled on a 42-ha area, with 206 geo-referenced points arranged in a regular grid spaced 50 m from each other, in a depth range of 0.00-0.20 m. In order to obtain an optimal sampling scheme for every physical and chemical property, a sample grid, a medium-scale variogram and the extended Spatial Simulated Annealing (SSA) method were used to minimize kriging variance. The optimization procedure was validated by constructing maps of relative improvement comparing the sample configuration before and after the process. A greater concentration of recommended points in specific areas (NW-SE direction) was observed, which also reflects a greater estimate variance at these locations. The addition of optimal samples, for specific regions, increased the accuracy up to 2 % for chemical and 1 % for physical properties. The use of a sample grid and medium-scale variogram, as previous information for the conception of additional sampling schemes, was very promising to determine the locations of these additional points for all physical and chemical soil properties, enhancing the accuracy of kriging estimates of the physical-chemical properties.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many problems in digital communications involve wideband radio signals. As the most recent example, the impressive advances in Cognitive Radio systems make even more necessary the development of sampling schemes for wideband radio signals with spectral holes. This is equivalent to considering a sparse multiband signal in the framework of Compressive Sampling theory. Starting from previous results on multicoset sampling and recent advances in compressive sampling, we analyze the matrix involved in the corresponding reconstruction equation and define a new method for the design of universal multicoset codes, that is, codes guaranteeing perfect reconstruction of the sparse multiband signal.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coprime and nested sampling are well known deterministic sampling techniques that operate at rates significantly lower than the Nyquist rate, and yet allow perfect reconstruction of the spectra of wide sense stationary signals. However, theoretical guarantees for these samplers assume ideal conditions such as synchronous sampling, and ability to perfectly compute statistical expectations. This thesis studies the performance of coprime and nested samplers in spatial and temporal domains, when these assumptions are violated. In spatial domain, the robustness of these samplers is studied by considering arrays with perturbed sensor locations (with unknown perturbations). Simplified expressions for the Fisher Information matrix for perturbed coprime and nested arrays are derived, which explicitly highlight the role of co-array. It is shown that even in presence of perturbations, it is possible to resolve $O(M^2)$ under appropriate conditions on the size of the grid. The assumption of small perturbations leads to a novel ``bi-affine" model in terms of source powers and perturbations. The redundancies in the co-array are then exploited to eliminate the nuisance perturbation variable, and reduce the bi-affine problem to a linear underdetermined (sparse) problem in source powers. This thesis also studies the robustness of coprime sampling to finite number of samples and sampling jitter, by analyzing their effects on the quality of the estimated autocorrelation sequence. A variety of bounds on the error introduced by such non ideal sampling schemes are computed by considering a statistical model for the perturbation. They indicate that coprime sampling leads to stable estimation of the autocorrelation sequence, in presence of small perturbations. Under appropriate assumptions on the distribution of WSS signals, sharp bounds on the estimation error are established which indicate that the error decays exponentially with the number of samples. The theoretical claims are supported by extensive numerical experiments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Knowledge of the geographical distribution of timber tree species in the Amazon is still scarce. This is especially true at the local level, thereby limiting natural resource management actions. Forest inventories are key sources of information on the occurrence of such species. However, areas with approved forest management plans are mostly located near access roads and the main industrial centers. The present study aimed to assess the spatial scale effects of forest inventories used as sources of occurrence data in the interpolation of potential species distribution models. The occurrence data of a group of six forest tree species were divided into four geographical areas during the modeling process. Several sampling schemes were then tested applying the maximum entropy algorithm, using the following predictor variables: elevation, slope, exposure, normalized difference vegetation index (NDVI) and height above the nearest drainage (HAND). The results revealed that using occurrence data from only one geographical area with unique environmental characteristics increased both model overfitting to input data and omission error rates. The use of a diagonal systematic sampling scheme and lower threshold values led to improved model performance. Forest inventories may be used to predict areas with a high probability of species occurrence, provided they are located in forest management plan regions representative of the environmental range of the model projection area.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main objective of this PhD was to further develop Bayesian spatio-temporal models (specifically the Conditional Autoregressive (CAR) class of models), for the analysis of sparse disease outcomes such as birth defects. The motivation for the thesis arose from problems encountered when analyzing a large birth defect registry in New South Wales. The specific components and related research objectives of the thesis were developed from gaps in the literature on current formulations of the CAR model, and health service planning requirements. Data from a large probabilistically-linked database from 1990 to 2004, consisting of fields from two separate registries: the Birth Defect Registry (BDR) and Midwives Data Collection (MDC) were used in the analyses in this thesis. The main objective was split into smaller goals. The first goal was to determine how the specification of the neighbourhood weight matrix will affect the smoothing properties of the CAR model, and this is the focus of chapter 6. Secondly, I hoped to evaluate the usefulness of incorporating a zero-inflated Poisson (ZIP) component as well as a shared-component model in terms of modeling a sparse outcome, and this is carried out in chapter 7. The third goal was to identify optimal sampling and sample size schemes designed to select individual level data for a hybrid ecological spatial model, and this is done in chapter 8. Finally, I wanted to put together the earlier improvements to the CAR model, and along with demographic projections, provide forecasts for birth defects at the SLA level. Chapter 9 describes how this is done. For the first objective, I examined a series of neighbourhood weight matrices, and showed how smoothing the relative risk estimates according to similarity by an important covariate (i.e. maternal age) helped improve the model’s ability to recover the underlying risk, as compared to the traditional adjacency (specifically the Queen) method of applying weights. Next, to address the sparseness and excess zeros commonly encountered in the analysis of rare outcomes such as birth defects, I compared a few models, including an extension of the usual Poisson model to encompass excess zeros in the data. This was achieved via a mixture model, which also encompassed the shared component model to improve on the estimation of sparse counts through borrowing strength across a shared component (e.g. latent risk factor/s) with the referent outcome (caesarean section was used in this example). Using the Deviance Information Criteria (DIC), I showed how the proposed model performed better than the usual models, but only when both outcomes shared a strong spatial correlation. The next objective involved identifying the optimal sampling and sample size strategy for incorporating individual-level data with areal covariates in a hybrid study design. I performed extensive simulation studies, evaluating thirteen different sampling schemes along with variations in sample size. This was done in the context of an ecological regression model that incorporated spatial correlation in the outcomes, as well as accommodating both individual and areal measures of covariates. Using the Average Mean Squared Error (AMSE), I showed how a simple random sample of 20% of the SLAs, followed by selecting all cases in the SLAs chosen, along with an equal number of controls, provided the lowest AMSE. The final objective involved combining the improved spatio-temporal CAR model with population (i.e. women) forecasts, to provide 30-year annual estimates of birth defects at the Statistical Local Area (SLA) level in New South Wales, Australia. The projections were illustrated using sixteen different SLAs, representing the various areal measures of socio-economic status and remoteness. A sensitivity analysis of the assumptions used in the projection was also undertaken. By the end of the thesis, I will show how challenges in the spatial analysis of rare diseases such as birth defects can be addressed, by specifically formulating the neighbourhood weight matrix to smooth according to a key covariate (i.e. maternal age), incorporating a ZIP component to model excess zeros in outcomes and borrowing strength from a referent outcome (i.e. caesarean counts). An efficient strategy to sample individual-level data and sample size considerations for rare disease will also be presented. Finally, projections in birth defect categories at the SLA level will be made.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the utility to computational Bayesian analyses of a particular family of recursive marginal likelihood estimators characterized by the (equivalent) algorithms known as "biased sampling" or "reverse logistic regression" in the statistics literature and "the density of states" in physics. Through a pair of numerical examples (including mixture modeling of the well-known galaxy dataset) we highlight the remarkable diversity of sampling schemes amenable to such recursive normalization, as well as the notable efficiency of the resulting pseudo-mixture distributions for gauging prior-sensitivity in the Bayesian model selection context. Our key theoretical contributions are to introduce a novel heuristic ("thermodynamic integration via importance sampling") for qualifying the role of the bridging sequence in this procedure, and to reveal various connections between these recursive estimators and the nested sampling technique.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis the use of the Bayesian approach to statistical inference in fisheries stock assessment is studied. The work was conducted in collaboration of the Finnish Game and Fisheries Research Institute by using the problem of monitoring and prediction of the juvenile salmon population in the River Tornionjoki as an example application. The River Tornionjoki is the largest salmon river flowing into the Baltic Sea. This thesis tackles the issues of model formulation and model checking as well as computational problems related to Bayesian modelling in the context of fisheries stock assessment. Each article of the thesis provides a novel method either for extracting information from data obtained via a particular type of sampling system or for integrating the information about the fish stock from multiple sources in terms of a population dynamics model. Mark-recapture and removal sampling schemes and a random catch sampling method are covered for the estimation of the population size. In addition, a method for estimating the stock composition of a salmon catch based on DNA samples is also presented. For most of the articles, Markov chain Monte Carlo (MCMC) simulation has been used as a tool to approximate the posterior distribution. Problems arising from the sampling method are also briefly discussed and potential solutions for these problems are proposed. Special emphasis in the discussion is given to the philosophical foundation of the Bayesian approach in the context of fisheries stock assessment. It is argued that the role of subjective prior knowledge needed in practically all parts of a Bayesian model should be recognized and consequently fully utilised in the process of model formulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This compendium presents information on the life history, diet, and abundance and distribution of 46 of the more abundant juvenile and small resident fish species, and data on three species of seagrasses in Florida Bay, Everglades National Park. Abundance and distribution of fish data were derived from three sampling schemes: (1) an otter trawl in basins (1984–1985, 1994–2001), (2) a surface trawl in basins (1984–1985), and (3) a surface trawl in channels (1984–1985). Results from surface trawling only included pelagic species. Collections made with an otter trawl in basins on a bi-monthly basis were emphasized. Nonparametric statistics were used to test spatial and temporal differences in the abundance of species and seagrasses. Fish species accounts were presented in four sections – Life history, Diet, Abundance and distribution, and Length-frequency distributions. Although Florida Bay is a subtropical estuary, the majority of fish species (76%) had warm-temperate affinities; i.e., only 24% were solely tropical species. The five most abundant species collected, in descending order, by (1) otter trawl in basins were: Eucinostomus gula, Lucania parva, Anchoa mitchilli, Lagodon rhomboides, and Syngnathus scovelli; (2) surface trawl in basins were: Hyporhamphus unifasciatus, Strongylura notata, Chriodorus atherinoides, Anchoa hepsetus, and Atherinomorus stipes; (3) surface trawl in channels were: Hypoatherina harringtonensis, A. stipes, A. mitchelli, H. unifasciatus, and C. atherinoides. (PDF file contains 219 pages.)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Changes in management practices and agricultural productivity over the past twenty years have lead to nitrate pollution and eutrophication of lakes and rivers. Information on nitrate concentrations and discharge has been collected on the River Frome at East Stoke since 1965, using the same analytical nitrate method so that the results are comparable. These records of weekly spot values of nitrate concentration and daily mean discharges have been analysed for trends and seasonal patterns in both concentration and nitrate loadings. In this extension of our nitrate contract, a new automated method of intensive sampling has been used to monitor short-term variability and to assess how well similar routine (weekly) sampling schemes can represent the true nitrate record.