6 resultados para Sampling schemes
em CaltechTHESIS
Resumo:
A central objective in signal processing is to infer meaningful information from a set of measurements or data. While most signal models have an overdetermined structure (the number of unknowns less than the number of equations), traditionally very few statistical estimation problems have considered a data model which is underdetermined (number of unknowns more than the number of equations). However, in recent times, an explosion of theoretical and computational methods have been developed primarily to study underdetermined systems by imposing sparsity on the unknown variables. This is motivated by the observation that inspite of the huge volume of data that arises in sensor networks, genomics, imaging, particle physics, web search etc., their information content is often much smaller compared to the number of raw measurements. This has given rise to the possibility of reducing the number of measurements by down sampling the data, which automatically gives rise to underdetermined systems.
In this thesis, we provide new directions for estimation in an underdetermined system, both for a class of parameter estimation problems and also for the problem of sparse recovery in compressive sensing. There are two main contributions of the thesis: design of new sampling and statistical estimation algorithms for array processing, and development of improved guarantees for sparse reconstruction by introducing a statistical framework to the recovery problem.
We consider underdetermined observation models in array processing where the number of unknown sources simultaneously received by the array can be considerably larger than the number of physical sensors. We study new sparse spatial sampling schemes (array geometries) as well as propose new recovery algorithms that can exploit priors on the unknown signals and unambiguously identify all the sources. The proposed sampling structure is generic enough to be extended to multiple dimensions as well as to exploit different kinds of priors in the model such as correlation, higher order moments, etc.
Recognizing the role of correlation priors and suitable sampling schemes for underdetermined estimation in array processing, we introduce a correlation aware framework for recovering sparse support in compressive sensing. We show that it is possible to strictly increase the size of the recoverable sparse support using this framework provided the measurement matrix is suitably designed. The proposed nested and coprime arrays are shown to be appropriate candidates in this regard. We also provide new guarantees for convex and greedy formulations of the support recovery problem and demonstrate that it is possible to strictly improve upon existing guarantees.
This new paradigm of underdetermined estimation that explicitly establishes the fundamental interplay between sampling, statistical priors and the underlying sparsity, leads to exciting future research directions in a variety of application areas, and also gives rise to new questions that can lead to stand-alone theoretical results in their own right.
Resumo:
This thesis studies three classes of randomized numerical linear algebra algorithms, namely: (i) randomized matrix sparsification algorithms, (ii) low-rank approximation algorithms that use randomized unitary transformations, and (iii) low-rank approximation algorithms for positive-semidefinite (PSD) matrices.
Randomized matrix sparsification algorithms set randomly chosen entries of the input matrix to zero. When the approximant is substituted for the original matrix in computations, its sparsity allows one to employ faster sparsity-exploiting algorithms. This thesis contributes bounds on the approximation error of nonuniform randomized sparsification schemes, measured in the spectral norm and two NP-hard norms that are of interest in computational graph theory and subset selection applications.
Low-rank approximations based on randomized unitary transformations have several desirable properties: they have low communication costs, are amenable to parallel implementation, and exploit the existence of fast transform algorithms. This thesis investigates the tradeoff between the accuracy and cost of generating such approximations. State-of-the-art spectral and Frobenius-norm error bounds are provided.
The last class of algorithms considered are SPSD "sketching" algorithms. Such sketches can be computed faster than approximations based on projecting onto mixtures of the columns of the matrix. The performance of several such sketching schemes is empirically evaluated using a suite of canonical matrices drawn from machine learning and data analysis applications, and a framework is developed for establishing theoretical error bounds.
In addition to studying these algorithms, this thesis extends the Matrix Laplace Transform framework to derive Chernoff and Bernstein inequalities that apply to all the eigenvalues of certain classes of random matrices. These inequalities are used to investigate the behavior of the singular values of a matrix under random sampling, and to derive convergence rates for each individual eigenvalue of a sample covariance matrix.
Resumo:
Curve samplers are sampling algorithms that proceed by viewing the domain as a vector space over a finite field, and randomly picking a low-degree curve in it as the sample. Curve samplers exhibit a nice property besides the sampling property: the restriction of low-degree polynomials over the domain to the sampled curve is still low-degree. This property is often used in combination with the sampling property and has found many applications, including PCP constructions, local decoding of codes, and algebraic PRG constructions.
The randomness complexity of curve samplers is a crucial parameter for its applications. It is known that (non-explicit) curve samplers using O(log N + log(1/δ)) random bits exist, where N is the domain size and δ is the confidence error. The question of explicitly constructing randomness-efficient curve samplers was first raised in [TU06] where they obtained curve samplers with near-optimal randomness complexity.
In this thesis, we present an explicit construction of low-degree curve samplers with optimal randomness complexity (up to a constant factor) that sample curves of degree (m logq(1/δ))O(1) in Fqm. Our construction is a delicate combination of several components, including extractor machinery, limited independence, iterated sampling, and list-recoverable codes.
Resumo:
How powerful are Quantum Computers? Despite the prevailing belief that Quantum Computers are more powerful than their classical counterparts, this remains a conjecture backed by little formal evidence. Shor's famous factoring algorithm [Shor97] gives an example of a problem that can be solved efficiently on a quantum computer with no known efficient classical algorithm. Factoring, however, is unlikely to be NP-Hard, meaning that few unexpected formal consequences would arise, should such a classical algorithm be discovered. Could it then be the case that any quantum algorithm can be simulated efficiently classically? Likewise, could it be the case that Quantum Computers can quickly solve problems much harder than factoring? If so, where does this power come from, and what classical computational resources do we need to solve the hardest problems for which there exist efficient quantum algorithms?
We make progress toward understanding these questions through studying the relationship between classical nondeterminism and quantum computing. In particular, is there a problem that can be solved efficiently on a Quantum Computer that cannot be efficiently solved using nondeterminism? In this thesis we address this problem from the perspective of sampling problems. Namely, we give evidence that approximately sampling the Quantum Fourier Transform of an efficiently computable function, while easy quantumly, is hard for any classical machine in the Polynomial Time Hierarchy. In particular, we prove the existence of a class of distributions that can be sampled efficiently by a Quantum Computer, that likely cannot be approximately sampled in randomized polynomial time with an oracle for the Polynomial Time Hierarchy.
Our work complements and generalizes the evidence given in Aaronson and Arkhipov's work [AA2013] where a different distribution with the same computational properties was given. Our result is more general than theirs, but requires a more powerful quantum sampler.
Resumo:
With the advent of the laser in the year 1960, the field of optics experienced a renaissance from what was considered to be a dull, solved subject to an active area of development, with applications and discoveries which are yet to be exhausted 55 years later. Light is now nearly ubiquitous not only in cutting-edge research in physics, chemistry, and biology, but also in modern technology and infrastructure. One quality of light, that of the imparted radiation pressure force upon reflection from an object, has attracted intense interest from researchers seeking to precisely monitor and control the motional degrees of freedom of an object using light. These optomechanical interactions have inspired myriad proposals, ranging from quantum memories and transducers in quantum information networks to precision metrology of classical forces. Alongside advances in micro- and nano-fabrication, the burgeoning field of optomechanics has yielded a class of highly engineered systems designed to produce strong interactions between light and motion.
Optomechanical crystals are one such system in which the patterning of periodic holes in thin dielectric films traps both light and sound waves to a micro-scale volume. These devices feature strong radiation pressure coupling between high-quality optical cavity modes and internal nanomechanical resonances. Whether for applications in the quantum or classical domain, the utility of optomechanical crystals hinges on the degree to which light radiating from the device, having interacted with mechanical motion, can be collected and detected in an experimental apparatus consisting of conventional optical components such as lenses and optical fibers. While several efficient methods of optical coupling exist to meet this task, most are unsuitable for the cryogenic or vacuum integration required for many applications. The first portion of this dissertation will detail the development of robust and efficient methods of optically coupling optomechanical resonators to optical fibers, with an emphasis on fabrication processes and optical characterization.
I will then proceed to describe a few experiments enabled by the fiber couplers. The first studies the performance of an optomechanical resonator as a precise sensor for continuous position measurement. The sensitivity of the measurement, limited by the detection efficiency of intracavity photons, is compared to the standard quantum limit imposed by the quantum properties of the laser probe light. The added noise of the measurement is seen to fall within a factor of 3 of the standard quantum limit, representing an order of magnitude improvement over previous experiments utilizing optomechanical crystals, and matching the performance of similar measurements in the microwave domain.
The next experiment uses single photon counting to detect individual phonon emission and absorption events within the nanomechanical oscillator. The scattering of laser light from mechanical motion produces correlated photon-phonon pairs, and detection of the emitted photon corresponds to an effective phonon counting scheme. In the process of scattering, the coherence properties of the mechanical oscillation are mapped onto the reflected light. Intensity interferometry of the reflected light then allows measurement of the temporal coherence of the acoustic field. These correlations are measured for a range of experimental conditions, including the optomechanical amplification of the mechanics to a self-oscillation regime, and comparisons are drawn to a laser system for phonons. Finally, prospects for using phonon counting and intensity interferometry to produce non-classical mechanical states are detailed following recent proposals in literature.
Resumo:
Flash memory is a leading storage media with excellent features such as random access and high storage density. However, it also faces significant reliability and endurance challenges. In flash memory, the charge level in the cells can be easily increased, but removing charge requires an expensive erasure operation. In this thesis we study rewriting schemes that enable the data stored in a set of cells to be rewritten by only increasing the charge level in the cells. We consider two types of modulation scheme; a convectional modulation based on the absolute levels of the cells, and a recently-proposed scheme based on the relative cell levels, called rank modulation. The contributions of this thesis to the study of rewriting schemes for rank modulation include the following: we
•propose a new method of rewriting in rank modulation, beyond the previously proposed method of “push-to-the-top”;
•study the limits of rewriting with the newly proposed method, and derive a tight upper bound of 1 bit per cell;
•extend the rank-modulation scheme to support rankings with repetitions, in order to improve the storage density;
•derive a tight upper bound of 2 bits per cell for rewriting in rank modulation with repetitions;
•construct an efficient rewriting scheme that asymptotically approaches the upper bound of 2 bit per cell.
The next part of this thesis studies rewriting schemes for a conventional absolute-levels modulation. The considered model is called “write-once memory” (WOM). We focus on WOM schemes that achieve the capacity of the model. In recent years several capacity-achieving WOM schemes were proposed, based on polar codes and randomness extractors. The contributions of this thesis to the study of WOM scheme include the following: we
•propose a new capacity-achievingWOM scheme based on sparse-graph codes, and show its attractive properties for practical implementation;
•improve the design of polarWOMschemes to remove the reliance on shared randomness and include an error-correction capability.
The last part of the thesis studies the local rank-modulation (LRM) scheme, in which a sliding window going over a sequence of real-valued variables induces a sequence of permutations. The LRM scheme is used to simulate a single conventional multi-level flash cell. The simulated cell is realized by a Gray code traversing all the relative-value states where, physically, the transition between two adjacent states in the Gray code is achieved by using a single “push-to-the-top” operation. The main results of the last part of the thesis are two constructions of Gray codes with asymptotically-optimal rate.