939 resultados para Salmonella enterica subsp. enterica serovar Gallinarum
Resumo:
The aim of the present study was to evaluate white blood cell counts and serum protein profiles of commercial layers experimentally infected with Salmonella Gallinarum (SG) in order to better understand the pathophysiology of the disease caused by this bacterium. 180 five-day-old commercial layers were divided into 3 groups (G); G1 and G2 received 0.2 mL of inoculate containing 3.3x10 8 CFU or 3.3×10 5 CFU SG resistant to nalidix acid (Nal r)/mL, respectively, directly into their crops. G3 group did not receive the inoculum. Birds were sacrificed 24 hours before (T1) and 24 hours after the infection (T2), and three (T3), five (T4), seven (T5), and ten (T6) days after the administration of the inoculum. White blood cell counts were carried out in a Neubauer hemocytometer and in blood smears. Serum protein concentrations, including acute-phase proteins, were determined using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Data were submitted to analysis of variance, and means were compared by Tukey's test (P <0.05). G1 and G2 groups presented higher leukocyte counts on T4 and T5, respectively, due to the increase of circulating lymphocytes and heterophils, with a significant difference relative to G3. In electrophoresis, an increase in the serum levels of ceruloplasmin, haptoglobin, and hemopexin and a decrease in transferrin, which are acute-phase proteins, was verified. IgA serum levels did not change; however, IgG concentration increased during the infection. In conclusion, the results provide information for the better understanding of the pathophysiology of fowl typhoid.
Resumo:
In this study, we have identified the possible genetic factors responsible for fowl-adaptation of Salmonella enterica serovar Gallinarum (S. Gallinarum). By comparing the genes related to Salmonella pathogenicity islands (SPI) of S. Gallinarum with those of Salmonella enterica serovar Enteritidis (S. Enteritidis) we have identified twenty-four positively selected genes. Our results suggest that the genes encoding the structural components of SPI-2 encoded type three secretion apparatus (TTSS) and the effector proteins that are secreted via SPI-1 encoded TTSS have evolved under positive selection pressure in these serovars. We propose that these positively selected genes play important roles in conferring different host-specificities to S. Gallinarum and S. Enteritidis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The live vaccine Cevac S. Gallinarum, made from a rough strain of Salmonella enterica subspecies enterica serotype Gallinarum is used for preventing fowl typhoid, a disease that still causes considerable economic losses in countries with a developing poultry industry. The objective of this paper was to evaluate a possible reversion to virulence of the strain used in a vaccine in commercial brown layers. Only Salmonella-free chicks were utilized. One hundred twenty (120) 12-day-old Dekalb brown layers divided in two trials were used. The first trial had six groups of 15 birds each. Birds of group 1 were vaccinated with 10 doses of Cevac S. Gallinarum subcutaneously and 10 doses orally, in a total of 20 doses of vaccine. Then the birds of groups 2, 3, 4, and 5 received inocula that contained feces and a pool of organs with fragments of liver, heart, spleen, and cecal tonsils obtained from the immediately previous group. The second trial had three groups with 10 birds each. Birds in group 7 received inocula containing a pool of organs from birds of group 5 from trial 1, whilst the birds in group 8 were vaccinated subcutaneously with one dose of vaccine. Both trials included negative control groups (6 and 9). Throughout the experimental period, birds were monitored for reactions to the vaccination on the site of administration, clinical signs, and post-mortem lesions. In each passage, in addition to the birds euthanized to provide the inocula material, two birds from each group were euthanized for assessment of possible lesions, and their organs (liver, heart, spleen and cecal tonsils) were cultured in an attempt to isolate the vaccine strain. Except for one bird from group 1, that had a local reaction on the site of vaccination - a small vesicle with less that 0.5 mm that persisted until the third day post vaccination -, no other bird had any local reaction to the vaccine or any visible clinical alteration. Birds in group 8 did not present any reaction or clinical alteration because of the vaccine. We only managed to re-isolate the vaccine strain in the inocula made from organs of birds in group 1. We confirmed the isolation by means of biochemical tests, serology, and acriflavine agglutination test. All other cultures made from organs or feces, from all the other experimental groups did not show any growth of the vaccine strain or any other Salmonella serovar, suggesting that the vaccinated birds did not shed the SG9R vaccine strain. No bird presented any clinical symptoms or died during the trials, and no gross lesions were observed in the post-mortem examinations. Under the controlled conditions and time-frame of the present experiment, it was possible to conclude that the rough 9R strain of Salmonella Gallinarum present in the vaccine Cevac S. Gallinarum (Ceva Campinas Ltda. - Campinas, SP - Brazil) did not revert to virulence.
Resumo:
Two experiments were performed to evaluate the protective effect of various vaccination combinations given at 5 and 9 weeks of age against experimental challenge with Salmonella enterica serovar Enteritidis ( SE) phage type 4 at 12 weeks of age. In Experiment 1, groups of commercial layers were vaccinated by one of the following programmes: Group 1, two doses of a SE bacterin (Layermune SE); Group 2, one dose of a live Salmonella enterica serovar Gallinarum vaccine (Cevac SG9R) followed by one dose of the SE bacterin; Group 3, one dose of each of two different multivalent inactivated vaccines containing SE cells (Corymune 4K and Corymune 7K; and Group 4, unvaccinated, challenged controls. In Experiment 2, groups of broiler breeders were vaccinated by the same programmes as Groups 1 and 2 above while Group 3 was an unvaccinated, challenged control group. All vaccination programmes and the challenge induced significant (P<0.05) seroconversion as measured by enzyme-linked immunosorbent assay. Overall, in both experiments, all vaccination schemes were significantly effective in reducing organ (spleen, liver and caeca) colonization by the challenge strain as well as reducing faecal excretion for at least 3 weeks. Vaccinated layers in Groups 1 and 2 and broiler breeders in Group 2 showed the greatest reduction in organ colonization and the least faecal excretion. In Experiment 1, layers vaccinated with multivalent inactivated vaccines containing a SE component (Group 3) were only moderately protected, indicating that such a vaccination programme may be useful in farms with good husbandry and housing conditions and low environmental infectious pressure by Salmonella.
Resumo:
A S. Pullorum (SP) é muito semelhante à S. Gallinarum (SG), agentes da Pulorose e Tifo aviário, respectivamente, sendo que as duas enfermidades são responsáveis por perdas econômicas no setor avícola. SP e SG são de difícil diferenciação em procedimento laboratorial rotineiro, mas uma prova bioquímica muito utilizada na distinção das duas refere-se à capacidade de assimilar o aminoácido ornitina: SP descarboxila este aminoácido enquanto SG não. No entanto, o isolamento de cepas com comportamento bioquímico atípico, tem dificultado tal diferenciação. Um dos genes relacionados à assimilação do aminoácido ornitina, denomina-se gene speC, o qual está presente nos dois sorovares. Analisando 21 amostras de SP e 15 de SG com a utilização da PCR não foi possível realizar a diferenciação dos dois sorovares pois os fragmentos gerados eram idênticos. Posteriormente, com o uso da técnica de tratamento enzimático com a enzima de restrição Eco RI, foi possível observar que o padrão de bandas gerado em cada sorovar era diferente, mesmo quando amostras que apresentavam comportamento bioquímico atípico eram analisadas. Tal fato permitiu a padronização da técnica para ser utilizada na diferenciação entre os sorovares Pullorum e Gallinarum de maneira rápida e segura.
Resumo:
Salmonella Pullorum and Salmonella Gallinarum are classified as biovars of Salmonella enterica subsp. enterica serovar Gallinarum. These salmonellae are the causative agents of Pullorum disease and fowl typhoid, respectively, and are widely distributed throughout the world. Although many developed countries have eradicated these diseases from commercial poultry, they are still the cause of significant economic loss in developing countries. When serovar Gallinarum is isolated, it is difficult to immediately differentiate between biovars because they are antigenically identical by serotyping. However, they cause distinct diseases with different epidemiology, and therefore it is important to differentiate them. This may be done biochemically but takes 2 to 3 days. In the present study, S. Pullorum and S. Gallinarum whole genomes were compared, and 1 genomic region of difference, which is part of the ratA gene, was chosen as a molecular marker for a polymerase chain reaction assay to differentiate rapidly between these organisms. In all, 26 strains of S. Gallinarum and 17 S. Pullorum strains were tested and successfully differentiated by the assay. © 2013 The Author(s).
Resumo:
Salmonella enterica subsp. enterica serovar Gallinarum biovar Pullorum is a bird-restricted pathogen which causes pullorum disease. The strain FCAV198 was isolated from a pool of chicken ovaries in Brazil, and its genome may be helpful for studies involving molecular mechanisms related to pathogenesis and other related applications.
Resumo:
The purpose of the study was to evaluate the blood serum components and histopathological findings of commercial layers experimentally infected with Salmonella Gallinarum (SG), the microorganism responsible for the fowl typhoid. 180 commercial layers were distributed into three groups (G): G1 and G2 received 0.2mL of inoculum containing 3.3x10 8 and 3.3x10 5 CFU of resistant SG to the nalidix acid (Nal r)/mL, respectively, directly into their crops; G3 did not receive the inoculum (control group). The birds were inoculated when they were 5 days old and the euthanasia was performed 24 hours before and after infection and 3, 5, 7 and 10 days after the administration of the inoculum. In each day of collection, blood samples were obtained for biochemical tests of the blood serum besides macroscopic and histopathological examination of the birds. Data were submitted to analysis of variance by the SAS statistical program and the means were compared by Tukeýs test (P<0,05). In the serum biochemical profile it was observed that the infection interfered in the values of total protein, albumin, calcium, phosphorus, cholesterol, triglycerides, GGT and ALT in the infected groups. The macroscopic examination showed hepatomegaly, alteration of the hepatic color and hemorrhagic spots in the kidneys of animals from G1. The histopathology showed degeneration of hepatocytes in G1 and G2 although other lesions like multifocal hepatic necrosis and inflammatory infiltrate on the liver and kidneys were restricted to G1. The alterations were more evident on G1 which received a higher concentration of bacteria/mL when compared to G2. The results showed that the correlation between biochemical alterations and macroscopic and histopathological lesions can assist the comprehension of the pathophysiology of fowl typhoid, supplying important information for the diagnosis and prognosis of this disease.
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Pathogens require protein-folding enzymes to produce functional virulence determinants. These foldases include the Dsb family of proteins, which catalyze oxidative folding in bacteria. Bacterial disulfide catalytic processes have been well characterized in Escherichia coli K-12 and these mechanisms have been extrapolated to other organisms. However, recent research indicates that the K-12 complement of Dsb proteins is not common to all bacteria. Importantly, many pathogenic bacteria have an extended arsenal of Dsb catalysts that is linked to their virulence. To help to elucidate the process of oxidative folding in pathogens containing a wide repertoire of Dsb proteins, Salmonella enterica serovar Typhimurium has been focused on. This Gram-negative bacterium contains three DsbA proteins: SeDsbA, SeDsbL and SeSrgA. Here, the expression, purification, crystallization and preliminary diffraction analysis of these three proteins are reported. SeDsbA, SeDsbL and SeSrgA crystals diffracted to resolution limits of 1.55, 1.57 and 2.6 Å and belonged to space groups P21, P21212 and C2, respectively.
Resumo:
In prototypic Escherichia coli K-12 the introduction of disulfide bonds into folding proteins is mediated by the Dsb family of enzymes, primarily through the actions of the highly oxidizing protein EcDsbA. Homologues of the Dsb catalysts are found in most bacteria. Interestingly, pathogens have developed distinct Dsb machineries that play a pivotal role in the biogenesis of virulence factors, hence contributing to their pathogenicity. Salmonella enterica serovar (sv.) Typhimurium encodes an extended number of sulfhydryl oxidases, namely SeDsbA, SeDsbL, and SeSrgA. Here we report a comprehensive analysis of the sv. Typhimurium thiol oxidative system through the structural and functional characterization of the three Salmonella DsbA paralogues. The three proteins share low sequence identity, which results in several unique three-dimensional characteristics, principally in areas involved in substrate binding and disulfide catalysis. Furthermore, the Salmonella DsbA-like proteins also have different redox properties. Whereas functional characterization revealed some degree of redundancy, the properties of SeDsbA, SeDsbL, and SeSrgA and their expression pattern in sv. Typhimurium indicate a diverse role for these enzymes in virulence.
Resumo:
The immune response against Salmonella is multi-faceted involving both the innate and the adaptive immune system. The characterization of specific Salmonella antigens inducing immune response could critically contribute to the development of epitope based vaccines for Salmonella. We have tried to identify a protective T cell epitope(s) of Salmonella, as cell mediated immunity conferred by CD8+ T cells is the most crucial subset conferring protective immunity against Salmonella. It being a proven fact that secreted proteins are better in inducing cell mediated immunity than cell surface and cytosolic antigens, we have analyzed all the genbank annotated Salmonella pathogenicity island 1 and 2 secreted proteins of Salmonella enterica serovar Typhimurium (S. typhimurium) and S. enterica serovar Typhi (S. typhi). They were subjected to BIMAS and SYFPEITHI analysis to map MHC-I and MHC-II binding epitopes. The huge profile of possible T cell epitopes obtained from the two classes of secreted proteins were tabulated and using a scoring system that considers the binding affinity and promiscuity of binding to more than one allele, SopB and SifB were chosen for experimental confirmation in murine immunization model. The entire SopB and SifB genes were cloned into DNA vaccine vectors and were administered along with live attenuated Salmonella and it was found that SopB vaccination reduced the bacterial burden of organs by about 5-fold on day 4 and day 8 after challenge with virulent Salmonella and proved to be a more efficient vaccination strategy than live attenuated bacteria alone.