905 resultados para Safety Performance Function (SPF)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current state of the practice in Blackspot Identification (BSI) utilizes safety performance functions based on total crash counts to identify transport system sites with potentially high crash risk. This paper postulates that total crash count variation over a transport network is a result of multiple distinct crash generating processes including geometric characteristics of the road, spatial features of the surrounding environment, and driver behaviour factors. However, these multiple sources are ignored in current modelling methodologies in both trying to explain or predict crash frequencies across sites. Instead, current practice employs models that imply that a single underlying crash generating process exists. The model mis-specification may lead to correlating crashes with the incorrect sources of contributing factors (e.g. concluding a crash is predominately caused by a geometric feature when it is a behavioural issue), which may ultimately lead to inefficient use of public funds and misidentification of true blackspots. This study aims to propose a latent class model consistent with a multiple crash process theory, and to investigate the influence this model has on correctly identifying crash blackspots. We first present the theoretical and corresponding methodological approach in which a Bayesian Latent Class (BLC) model is estimated assuming that crashes arise from two distinct risk generating processes including engineering and unobserved spatial factors. The Bayesian model is used to incorporate prior information about the contribution of each underlying process to the total crash count. The methodology is applied to the state-controlled roads in Queensland, Australia and the results are compared to an Empirical Bayesian Negative Binomial (EB-NB) model. A comparison of goodness of fit measures illustrates significantly improved performance of the proposed model compared to the NB model. The detection of blackspots was also improved when compared to the EB-NB model. In addition, modelling crashes as the result of two fundamentally separate underlying processes reveals more detailed information about unobserved crash causes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crash reduction factors (CRFs) are used to estimate the potential number of traffic crashes expected to be prevented from investment in safety improvement projects. The method used to develop CRFs in Florida has been based on the commonly used before-and-after approach. This approach suffers from a widely recognized problem known as regression-to-the-mean (RTM). The Empirical Bayes (EB) method has been introduced as a means to addressing the RTM problem. This method requires the information from both the treatment and reference sites in order to predict the expected number of crashes had the safety improvement projects at the treatment sites not been implemented. The information from the reference sites is estimated from a safety performance function (SPF), which is a mathematical relationship that links crashes to traffic exposure. The objective of this dissertation was to develop the SPFs for different functional classes of the Florida State Highway System. Crash data from years 2001 through 2003 along with traffic and geometric data were used in the SPF model development. SPFs for both rural and urban roadway categories were developed. The modeling data used were based on one-mile segments that contain homogeneous traffic and geometric conditions within each segment. Segments involving intersections were excluded. The scatter plots of data show that the relationships between crashes and traffic exposure are nonlinear, that crashes increase with traffic exposure in an increasing rate. Four regression models, namely, Poisson (PRM), Negative Binomial (NBRM), zero-inflated Poisson (ZIP), and zero-inflated Negative Binomial (ZINB), were fitted to the one-mile segment records for individual roadway categories. The best model was selected for each category based on a combination of the Likelihood Ratio test, the Vuong statistical test, and the Akaike's Information Criterion (AIC). The NBRM model was found to be appropriate for only one category and the ZINB model was found to be more appropriate for six other categories. The overall results show that the Negative Binomial distribution model generally provides a better fit for the data than the Poisson distribution model. In addition, the ZINB model was found to give the best fit when the count data exhibit excess zeros and over-dispersion for most of the roadway categories. While model validation shows that most data points fall within the 95% prediction intervals of the models developed, the Pearson goodness-of-fit measure does not show statistical significance. This is expected as traffic volume is only one of the many factors contributing to the overall crash experience, and that the SPFs are to be applied in conjunction with Accident Modification Factors (AMFs) to further account for the safety impacts of major geometric features before arriving at the final crash prediction. However, with improved traffic and crash data quality, the crash prediction power of SPF models may be further improved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years the development and use of crash prediction models for roadway safety analyses have received substantial attention. These models, also known as safety performance functions (SPFs), relate the expected crash frequency of roadway elements (intersections, road segments, on-ramps) to traffic volumes and other geometric and operational characteristics. A commonly practiced approach for applying intersection SPFs is to assume that crash types occur in fixed proportions (e.g., rear-end crashes make up 20% of crashes, angle crashes 35%, and so forth) and then apply these fixed proportions to crash totals to estimate crash frequencies by type. As demonstrated in this paper, such a practice makes questionable assumptions and results in considerable error in estimating crash proportions. Through the use of rudimentary SPFs based solely on the annual average daily traffic (AADT) of major and minor roads, the homogeneity-in-proportions assumption is shown not to hold across AADT, because crash proportions vary as a function of both major and minor road AADT. For example, with minor road AADT of 400 vehicles per day, the proportion of intersecting-direction crashes decreases from about 50% with 2,000 major road AADT to about 15% with 82,000 AADT. Same-direction crashes increase from about 15% to 55% for the same comparison. The homogeneity-in-proportions assumption should be abandoned, and crash type models should be used to predict crash frequency by crash type. SPFs that use additional geometric variables would only exacerbate the problem quantified here. Comparison of models for different crash types using additional geometric variables remains the subject of future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2010, the American Association of State Highway and Transportation Officials (AASHTO) released a safety analysis software system known as SafetyAnalyst. SafetyAnalyst implements the empirical Bayes (EB) method, which requires the use of Safety Performance Functions (SPFs). The system is equipped with a set of national default SPFs, and the software calibrates the default SPFs to represent the agency's safety performance. However, it is recommended that agencies generate agency-specific SPFs whenever possible. Many investigators support the view that the agency-specific SPFs represent the agency data better than the national default SPFs calibrated to agency data. Furthermore, it is believed that the crash trends in Florida are different from the states whose data were used to develop the national default SPFs. In this dissertation, Florida-specific SPFs were developed using the 2008 Roadway Characteristics Inventory (RCI) data and crash and traffic data from 2007-2010 for both total and fatal and injury (FI) crashes. The data were randomly divided into two sets, one for calibration (70% of the data) and another for validation (30% of the data). The negative binomial (NB) model was used to develop the Florida-specific SPFs for each of the subtypes of roadway segments, intersections and ramps, using the calibration data. Statistical goodness-of-fit tests were performed on the calibrated models, which were then validated using the validation data set. The results were compared in order to assess the transferability of the Florida-specific SPF models. The default SafetyAnalyst SPFs were calibrated to Florida data by adjusting the national default SPFs with local calibration factors. The performance of the Florida-specific SPFs and SafetyAnalyst default SPFs calibrated to Florida data were then compared using a number of methods, including visual plots and statistical goodness-of-fit tests. The plots of SPFs against the observed crash data were used to compare the prediction performance of the two models. Three goodness-of-fit tests, represented by the mean absolute deviance (MAD), the mean square prediction error (MSPE), and Freeman-Tukey R2 (R2FT), were also used for comparison in order to identify the better-fitting model. The results showed that Florida-specific SPFs yielded better prediction performance than the national default SPFs calibrated to Florida data. The performance of Florida-specific SPFs was further compared with that of the full SPFs, which include both traffic and geometric variables, in two major applications of SPFs, i.e., crash prediction and identification of high crash locations. The results showed that both SPF models yielded very similar performance in both applications. These empirical results support the use of the flow-only SPF models adopted in SafetyAnalyst, which require much less effort to develop compared to full SPFs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2010, the American Association of State Highway and Transportation Officials (AASHTO) released a safety analysis software system known as SafetyAnalyst. SafetyAnalyst implements the empirical Bayes (EB) method, which requires the use of Safety Performance Functions (SPFs). The system is equipped with a set of national default SPFs, and the software calibrates the default SPFs to represent the agency’s safety performance. However, it is recommended that agencies generate agency-specific SPFs whenever possible. Many investigators support the view that the agency-specific SPFs represent the agency data better than the national default SPFs calibrated to agency data. Furthermore, it is believed that the crash trends in Florida are different from the states whose data were used to develop the national default SPFs. In this dissertation, Florida-specific SPFs were developed using the 2008 Roadway Characteristics Inventory (RCI) data and crash and traffic data from 2007-2010 for both total and fatal and injury (FI) crashes. The data were randomly divided into two sets, one for calibration (70% of the data) and another for validation (30% of the data). The negative binomial (NB) model was used to develop the Florida-specific SPFs for each of the subtypes of roadway segments, intersections and ramps, using the calibration data. Statistical goodness-of-fit tests were performed on the calibrated models, which were then validated using the validation data set. The results were compared in order to assess the transferability of the Florida-specific SPF models. The default SafetyAnalyst SPFs were calibrated to Florida data by adjusting the national default SPFs with local calibration factors. The performance of the Florida-specific SPFs and SafetyAnalyst default SPFs calibrated to Florida data were then compared using a number of methods, including visual plots and statistical goodness-of-fit tests. The plots of SPFs against the observed crash data were used to compare the prediction performance of the two models. Three goodness-of-fit tests, represented by the mean absolute deviance (MAD), the mean square prediction error (MSPE), and Freeman-Tukey R2 (R2FT), were also used for comparison in order to identify the better-fitting model. The results showed that Florida-specific SPFs yielded better prediction performance than the national default SPFs calibrated to Florida data. The performance of Florida-specific SPFs was further compared with that of the full SPFs, which include both traffic and geometric variables, in two major applications of SPFs, i.e., crash prediction and identification of high crash locations. The results showed that both SPF models yielded very similar performance in both applications. These empirical results support the use of the flow-only SPF models adopted in SafetyAnalyst, which require much less effort to develop compared to full SPFs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Australia, between 1994 and 2000, 50 construction workers were killed each year as a result of their work, the industry fatality rate, at 10.4 per 100,000 persons, is similar to the national road toll fatality rate and the rate of serious injury is 50% higher than the all industries average. This poor performance represents a significant threat to the industry’s social sustainability. Despite the best efforts of regulators and policy makers at both State and Federal levels, the incidence of death, injury and illness in the Australian construction industry has remained intransigently high, prompting an industry-led initiative to improve the occupational health and safety (OHS) performance of the Australian construction industry. The ‘Safer Construction’ project involves the development of an evidence-based Voluntary Code of Practice for OHS in the industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the expected safety performance of rural signalized intersections is critical for (a) identifying high-risk sites where the observed safety performance is substantially worse than the expected safety performance, (b) understanding influential factors associated with crashes, and (c) predicting the future performance of sites and helping plan safety-enhancing activities. These three critical activities are routinely conducted for safety management and planning purposes in jurisdictions throughout the United States and around the world. This paper aims to develop baseline expected safety performance functions of rural signalized intersections in South Korea, which to date have not yet been established or reported in the literature. Data are examined from numerous locations within South Korea for both three-legged and four-legged configurations. The safety effects of a host of operational and geometric variables on the safety performance of these sites are also examined. In addition, supplementary tables and graphs are developed for comparing the baseline safety performance of sites with various geometric and operational features. These graphs identify how various factors are associated with safety. The expected safety prediction tables offer advantages over regression prediction equations by allowing the safety manager to isolate specific features of the intersections and examine their impact on expected safety. The examination of the expected safety performance tables through illustrated examples highlights the need to correct for regression-to-the-mean effects, emphasizes the negative impacts of multicollinearity, shows why multivariate models do not translate well to accident modification factors, and illuminates the need to examine road safety carefully and methodically. Caveats are provided on the use of the safety performance prediction graphs developed in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of a structural equation model (SEM) that describes and quantifies the relationships between corporate culture and safety performance. The SEM is estimated using 196 individual questionnaire responses from three companies with better than average safety records. A multiattribute analysis of corporate safety culture characteristics resulted in a hierarchical description of corporate safety culture comprised of three major categories — people, process, and value. These three major categories were decomposed into 54 measurable questions and used to develop a questionnaire to quantify corporate safety culture. The SEM identified five latent variables that describe corporate safety culture: (1) a company’s safety commitment; (2) the safety incentives that are offered to field personal for safe performance; (3) the subcontractor involvement in the company culture; (4) the field safety accountability and dedication; and (5) the disincentives for unsafe behaviors. These characteristics of company safety culture serve as indicators for a company’s safety performance. Based on the findings from this limited sample of three companies, this paper proposes a list of practices that companies may consider to improve corporate safety culture and safety performance. A more comprehensive study based on a larger sample is recommended to corroborate the findings of this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Safety psychology and workplace safety Commitment, Motivational and attitudinal components of safety Leadership Group Dynamics and Group Change Case Study from Construction

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of repair, maintenance, minor alteration, and addition (RMAA) works is increasing in many built societies. When the volume of RMAA works increases, the occurrence of RMAA accidents also increases. Safety of RMAA works deserves more attention; however, research in this important topic remains limited. Safety climate is considered a key factor that influences safety performance. The present study aims to determine the relationships between safety climate and safety performance of RMAA works, thereby offering recommendations on improving RMAA safety. Questionnaires were dispatched to private property management companies, maintenance sections of quasi-government developers and their subcontractors, RMAA sections of general contractors, small RMAA contractors, building services contractors and trade unions in Hong Kong. In total, data from 396 questionnaires were collected from RMAA workers. The sample was divided into two equal-sized sub-samples. On the first sub-sample SEM was used to test the model, which was validated on the second sub-sample. The model revealed a significant negative relationship between RMAA safety climate and incidence of self-reported near misses and injuries, and significant positive relationships between RMAA safety climate and safety participation and safety compliance respectively. Higher RMAA safety climate was positively associated with a lower incidence of self-reported near misses and injuries and higher levels of safety participation and safety compliance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose Managing and maintaining infrastructure assets are one of the indispensible tasks for many government agencies to preserve the nations' economic viability and social welfare. To reduce the expenditures over the life-cycle of an infrastructure asset and extend the period for which the asset performs effectively, proper repair and maintenance are essential. While repair, maintenance, minor alteration and addition (RMAA) sector is expanding in many developed cities, occurrences of fatalities and injuries in this sector are also soaring. The purposes of this paper are to identify and then evaluate the various strategies for improving the safety performance of RMAA works. Design/methodology/approach Semi-structured interviews and two rounds of Delphi survey were conducted for data collection. Findings Raising safety awareness of RMAA workers and selecting contractors with a good record of safety performance are the two most important strategies to improve the safety performance in this sector. Technology innovations and a pay-for-safety scheme are regarded as the two least important strategies. Originality/value The paper highlights possible ways to enhance safety of the rather under-explored RMAA sector in the construction industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gross value of cons truction work in the repair , maintenance, minor alte ration and addition (RMAA) sector in Hong Kong has expanded dramatically by 58% from 1998 to 2007, accounting for over 53% of the whole construction market in 2007. Unfortunately, the portion of industrial accidents arising from this sector also increased substantially during the same period. It is important to improve the safety performance of the RMAA sector. This paper has set out the objectives to examine safety statistics of RMAA works; to compare them with those of green field projects; and more importantly, to highlight potential hurdles en countered in the process of comparison and finally to provide effective recommendations for overcoming these impediments. To strive for continuous safety improvement of RMAA works, comparable safety statistics should be compiled for this sector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this research is to develop a methodology that predicts the safety performance of various elements considered in the planning, design, and operation of nonlimited- access rural multilane highways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aims to analyse the relationship between safety climate and the level of risk acceptance, as well as its relationship with workplace safety performance. The sample includes 14 companies and 403 workers. The safety climate assessment was performed by the application of a Safety Climate in Wood Industries questionnaire and safety performance was assessed with a checklist. Judgements about risk acceptance were measured through questionnaires together with four other variables: trust, risk perception, benefit perception and emotion. Safety climate was found to be correlated with workgroup safety performance, and it also plays an important role in workers’ risk acceptance levels. Risk acceptance tends to be lower when safety climate scores of workgroups are high, and subsequently, their safety performance is better. These findings seem to be relevant, as they provide Occupational, Safety and Health practitioners with a better understanding of workers’ risk acceptance levels and of the differences among workgroups.