8 resultados para SYMMETRIZATION
Resumo:
Symmetrization of topologically ordered wave functions is a powerful method for constructing new topological models. Here we study wave functions obtained by symmetrizing quantum double models of a group G in the projected entangled pair states (PEPS) formalism. We show that symmetrization naturally gives rise to a larger symmetry group G˜ which is always non-Abelian. We prove that by symmetrizing on sufficiently large blocks, one can always construct wave functions in the same phase as the double model of G˜. In order to understand the effect of symmetrization on smaller patches, we carry out numerical studies for the toric code model, where we find strong evidence that symmetrizing on individual spins gives rise to a critical model which is at the phase transitions of two inequivalent toric codes, obtained by anyon condensation from the double model of G˜.
Resumo:
We present new expected risk bounds for binary and multiclass prediction, and resolve several recent conjectures on sample compressibility due to Kuzmin and Warmuth. By exploiting the combinatorial structure of concept class F, Haussler et al. achieved a VC(F)/n bound for the natural one-inclusion prediction strategy. The key step in their proof is a d = VC(F) bound on the graph density of a subgraph of the hypercube—oneinclusion graph. The first main result of this paper is a density bound of n [n−1 <=d-1]/[n <=d] < d, which positively resolves a conjecture of Kuzmin and Warmuth relating to their unlabeled Peeling compression scheme and also leads to an improved one-inclusion mistake bound. The proof uses a new form of VC-invariant shifting and a group-theoretic symmetrization. Our second main result is an algebraic topological property of maximum classes of VC-dimension d as being d contractible simplicial complexes, extending the well-known characterization that d = 1 maximum classes are trees. We negatively resolve a minimum degree conjecture of Kuzmin and Warmuth—the second part to a conjectured proof of correctness for Peeling—that every class has one-inclusion minimum degree at most its VCdimension. Our final main result is a k-class analogue of the d/n mistake bound, replacing the VC-dimension by the Pollard pseudo-dimension and the one-inclusion strategy by its natural hypergraph generalization. This result improves on known PAC-based expected risk bounds by a factor of O(logn) and is shown to be optimal up to an O(logk) factor. The combinatorial technique of shifting takes a central role in understanding the one-inclusion (hyper)graph and is a running theme throughout.
Resumo:
We present new expected risk bounds for binary and multiclass prediction, and resolve several recent conjectures on sample compressibility due to Kuzmin and Warmuth. By exploiting the combinatorial structure of concept class F, Haussler et al. achieved a VC(F)/n bound for the natural one-inclusion prediction strategy. The key step in their proof is a d=VC(F) bound on the graph density of a subgraph of the hypercube—one-inclusion graph. The first main result of this report is a density bound of n∙choose(n-1,≤d-1)/choose(n,≤d) < d, which positively resolves a conjecture of Kuzmin and Warmuth relating to their unlabeled Peeling compression scheme and also leads to an improved one-inclusion mistake bound. The proof uses a new form of VC-invariant shifting and a group-theoretic symmetrization. Our second main result is an algebraic topological property of maximum classes of VC-dimension d as being d-contractible simplicial complexes, extending the well-known characterization that d=1 maximum classes are trees. We negatively resolve a minimum degree conjecture of Kuzmin and Warmuth—the second part to a conjectured proof of correctness for Peeling—that every class has one-inclusion minimum degree at most its VC-dimension. Our final main result is a k-class analogue of the d/n mistake bound, replacing the VC-dimension by the Pollard pseudo-dimension and the one-inclusion strategy by its natural hypergraph generalization. This result improves on known PAC-based expected risk bounds by a factor of O(log n) and is shown to be optimal up to a O(log k) factor. The combinatorial technique of shifting takes a central role in understanding the one-inclusion (hyper)graph and is a running theme throughout
Resumo:
Some thermodynamical properties of solids, such as heat capacity and magnetic susceptibility, have recently been shown to be linked to the amount of entanglement in a solid. However, this entanglement may appear a mere mathematical artefact of the typical symmetrization procedure of many-body wavefunction in solid state physics. Here we show that this entanglement is physical, demonstrating the principles of its extraction from a typical solid-state system by scattering two particles off the system. Moreover, we show how to simulate this process using present day optical lattice technology. This demonstrates not only that entanglement exists in solids but also that it can be used for quantum information processing or as a test of Bell's inequalities.
Resumo:
We study an elliptic system of the form Lu = vertical bar v vertical bar(p-1) v and Lv = vertical bar u vertical bar(q-1) u in Omega with homogeneous Dirichlet boundary condition, where Lu := -Delta u in the case of a bounded domain and Lu := -Delta u + u in the cases of an exterior domain or the whole space R-N. We analyze the existence, uniqueness, sign and radial symmetry of ground state solutions and also look for sign changing solutions of the system. More general non-linearities are also considered.
Resumo:
Bis heute ist die Frage nicht geklärt, warum bei der Entstehung des Universums Materie gegenüber der Antimaterie bevorzugt war und das heutige Materieuniversum entstanden ist. Eine Voraussetzung für die Entstehung dieser Materie-Antimaterie-Asymmetrie ist die Verletzung der Kombination von Ladungs- (C) und Punktsymmetrie (P), die CP-Verletzung. CP-Verletzung kann sich unter anderem in den Zerfällen K+- -> pi+- pi0 pi0 zeigen. Die NA48/2"=Kollaboration zeichnete während den Jahren 2003 und 2004 über 200~TB Daten von Zerfällen geladener Kaonen auf. In dieser Arbeit wurde die CP"=verletzende Asymmetrie der Zerfälle K+- -> pi+- pi0 pi0 mit über 90~Millionen ausgewählten Ereignissen aus diesem Datensatz gemessen. Vorhersagen im Standardmodell der Teilchenphysik sagen hier eine CP"=verletzende Asymmetrie in der Größenordnung zwischen $10^{-6}$ und $10^{-5}$ voraus. In Modellen außerhalb des Standardmodells kann es aber auch größere Asymmetrien geben. Das NA48/2"=Experiment war darauf ausgelegt, mögliche systematische Unsicherheiten zu begrenzen. Um dies zu erreichen, wurden positive und negative Kaonen simultan an einem Target erzeugt und ihr Impuls durch ein Strahlsystem mit zwei Strahlengängen auf ca. $60~GeV/c$ begrenzt. Die Strahlen wurden auf wenige Millimeter genau überlagert in die Zerfallsregion geleitet. Die Strahlengänge von positiven und negativen Kaonen sowie die Polarität des Magneten des Impulsspektrometers wurden regelmäßig gewechselt. Dies erlaubte eine Symmetrisierung von Strahlführung und Detektor für positive und negative Kaonen während der Analyse. Durch ein Vierfachverhältnis der vier Datensätze mit den unterschiedlichen Konfigurationen konnte sichergestellt werden, dass alle durch Strahlführung oder Detektor erzeugten Asymmetrien sich in erster Ordnung aufheben. Um die unterschiedlichen Produktionsspektren von positiven und negativen Kaonen auszugleichen wurde in dieser Arbeit eine Ereignisgewichtung durchgeführt. Die Analyse wurde auf mögliche systematische Unsicherheiten untersucht. Dabei zeigte sich, dass die systematischen Unsicherheiten in der Analyse deutlich kleiner als der statistischer Fehler sind. Das Ergebnis der Messung des die CP-verletzende Asymmetrie beschreibenden Parameters $A_g$ ist: begin{equation} A_g= (1,2 pm 1,7_{mathrm{(stat)}} pm 0,7_{mathrm{(sys)}}) cdot 10^{-4}. end{equation} Diese Messung ist fast zehnmal genauer als bisherige Messungen und stimmt innerhalb ihrer Unsicherheit mit dem Standardmodell überein. Modelle, die eine größere CP-Verletzung in diesem Zerfall vorhersagen, können ausgeschlossen werden.
Resumo:
So far, no experimental data of the infrared and Raman spectra of 13C isotopologue of dimethyl ether are available. With the aim of providing some clues of its low-lying vibrational bands and with the hope of contributing in a next spectral analysis, a number of vibrational transition frequencies below 300 cm−1 of the infrared spectrum and around 400 cm−1 of the Raman spectrum have been predicted and their assignments were proposed. Calculations were carried out through an ab initio three dimensional potential energy surface based on a previously reported one for the most abundant dimethyl ether isotopologue (M. Villa et al., J. Phys. Chem. A 115 (2011) 13573). The potential function was vibrationally corrected and computed with a highly correlated CCSD(T) method involving the COC bending angle and the two large amplitude CH3 internal rotation degrees of freedom. Also, the Hamiltonian parameters could represent a support for the spectral characterization of this species. Although the computed vibrational term values are expected to be very accurate, an empirical adjustment of the Hamiltonian has been performed with the purpose of anticipating some workable corrections to any possible divergence of the vibrational frequencies. Also, the symmetry breaking derived from the isotopic substitution of 13C in the dimethyl ether was taken into account when the symmetrization procedure was applied.
Resumo:
2010 Mathematics Subject Classification: 35A23, 35B51, 35J96, 35P30, 47J20, 52A40.