961 resultados para SUSCEPTIBILITY LOCUS
Resumo:
Over the past 20 years, the incidence of cutaneous malignant melanoma (CMM) has increased dramatically worldwide. A positive family history of the disease is among the most established risk factors for CMM; it is estimated that 10% of CMM cases result from an inherited predisposition. Although mutations in two genes, CDKN2A and CDK4, have been shown to confer an increased risk of CMM, they account for only 20%-25% of families with multiple cases of CMM. Therefore, to localize additional loci involved in melanoma susceptibility, we have performed a genomewide scan for linkage in 49 Australian pedigrees containing at least three CMM cases, in which CDKN2A and CDK4 involvement has been excluded. The highest two-point parametric LOD score (1.82; recombination fraction [theta] 0.2) was obtained at D1S2726, which maps to the short arm of chromosome 1 (1p22). A parametric LOD score of 4.65 (theta = 0) and a nonparametric LOD score of 4.19 were found at D1S2779 in nine families selected for early age at onset. Additional typing yielded seven adjacent markers with LOD scores 13 in this subset, with the highest parametric LOD score, 4.95 (theta = 0) ( nonparametric LOD score 5.37), at D1S2776. Analysis of 33 additional multiplex families with CMM from several continents provided further evidence for linkage to the 1p22 region, again strongest in families with the earliest mean age at diagnosis. A nonparametric ordered sequential analysis was used, based on the average age at diagnosis in each family. The highest LOD score, 6.43, was obtained at D1S2779 and occurred when the 15 families with the earliest ages at onset were included. These data provide significant evidence of a novel susceptibility gene for CMM located within chromosome band 1p22.
Resumo:
BACKGROUND & AIMS: Recently, genetic variations in MICA (lead single nucleotide polymorphism [SNP] rs2596542) were identified by a genome-wide association study (GWAS) to be associated with hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC) in Japanese patients. In the present study, we sought to determine whether this SNP is predictive of HCC development in the Caucasian population as well. METHODS: An extended region around rs2596542 was genotyped in 1924 HCV-infected patients from the Swiss Hepatitis C Cohort Study (SCCS). Pair-wise correlation between key SNPs was calculated both in the Japanese and European populations (HapMap3: CEU and JPT). RESULTS: To our surprise, the minor allele A of rs2596542 in proximity of MICA appeared to have a protective impact on HCC development in Caucasians, which represents an inverse association as compared to the one observed in the Japanese population. Detailed fine-mapping analyses revealed a new SNP in HCP5 (rs2244546) upstream of MICA as strong predictor of HCV-related HCC in the SCCS (univariable p=0.027; multivariable p=0.0002, odds ratio=3.96, 95% confidence interval=1.90-8.27). This newly identified SNP had a similarly directed effect on HCC in both Caucasian and Japanese populations, suggesting that rs2244546 may better tag a putative true variant than the originally identified SNPs. CONCLUSIONS: Our data confirms the MICA/HCP5 region as susceptibility locus for HCV-related HCC and identifies rs2244546 in HCP5 as a novel tagging SNP. In addition, our data exemplify the need for conducting meta-analyses of cohorts of different ethnicities in order to fine map GWAS signals.
Resumo:
Essential hypertension is a multifactorial disorder and is the main risk factor for renal and cardiovascular complications. The research on the genetics of hypertension has been frustrated by the small predictive value of the discovered genetic variants. The HYPERGENES Project investigated associations between genetic variants and essential hypertension pursuing a 2-stage study by recruiting cases and controls from extensively characterized cohorts recruited over many years in different European regions. The discovery phase consisted of 1865 cases and 1750 controls genotyped with 1M Illumina array. Best hits were followed up in a validation panel of 1385 cases and 1246 controls that were genotyped with a custom array of 14 055 markers. We identified a new hypertension susceptibility locus (rs3918226) in the promoter region of the endothelial NO synthase gene (odds ratio: 1.54 [95% CI: 1.37-1.73]; combined P=2.58 · 10(-13)). A meta-analysis, using other in silico/de novo genotyping data for a total of 21 714 subjects, resulted in an overall odds ratio of 1.34 (95% CI: 1.25-1.44; P=1.032 · 10(-14)). The quantitative analysis on a population-based sample revealed an effect size of 1.91 (95% CI: 0.16-3.66) for systolic and 1.40 (95% CI: 0.25-2.55) for diastolic blood pressure. We identified in silico a potential binding site for ETS transcription factors directly next to rs3918226, suggesting a potential modulation of endothelial NO synthase expression. Biological evidence links endothelial NO synthase with hypertension, because it is a critical mediator of cardiovascular homeostasis and blood pressure control via vascular tone regulation. This finding supports the hypothesis that there may be a causal genetic variation at this locus.
Resumo:
Advances in large-scale analysis of human genomic variability provide unprecedented opportunities to study the genetic basis of susceptibility to infectious agents. We report here the use of an in vitro system for the identification of a locus on HSA8q24.3 associated with cellular susceptibility to HIV-1. This locus was mapped through quantitative linkage analysis using cell lines from multigeneration families, validated in vitro, and followed up by two independent association studies in HIV-positive individuals. Single nucleotide polymorphism rs2572886, which is associated with cellular susceptibility to HIV-1 in lymphoblastoid B cells and in primary T cells, was also associated with accelerated disease progression in one of two cohorts of HIV-1-infected patients. Biological analysis suggests a role of the rs2572886 region in the regulation of the LY6 family of glycosyl-phosphatidyl-inositol (GPI)-anchored proteins. Genetic analysis of in vitro cellular phenotypes provides an attractive approach for the discovery of susceptibility loci to infectious agents.
Resumo:
We conducted a genome-wide association study for androgenic alopecia in 1,125 men and identified a newly associated locus at chromosome 20p11.22, confirmed in three independent cohorts (n = 1,650; OR = 1.60, P = 1.1 x 10(-14) for rs1160312). The one man in seven who harbors risk alleles at both 20p11.22 and AR (encoding the androgen receptor) has a sevenfold-increased odds of androgenic alopecia (OR = 7.12, P = 3.7 x 10(-15)).
Resumo:
We previously established an 80 kb haplotype upstream of TNFSF4 as a susceptibility locus in the autoimmune disease SLE. SLE-associated alleles at this locus are associated with inflammatory disorders, including atherosclerosis and ischaemic stroke. In Europeans, the TNFSF4 causal variants have remained elusive due to strong linkage disequilibrium exhibited by alleles spanning the region. Using a trans-ancestral approach to fine-map the locus, utilising 17,900 SLE and control subjects including Amerindian/Hispanics (1348 cases, 717 controls), African-Americans (AA) (1529, 2048) and better powered cohorts of Europeans and East Asians, we find strong association of risk alleles in all ethnicities; the AA association replicates in African-American Gullah (152,122). The best evidence of association comes from two adjacent markers: rs2205960-T (P = 1.71×10-34, OR = 1.43[1.26-1.60]) and rs1234317-T (P = 1.16×10-28, OR = 1.38[1.24-1.54]). Inference of fine-scale recombination rates for all populations tested finds the 80 kb risk and non-risk haplotypes in all except African-Americans. In this population the decay of recombination equates to an 11 kb risk haplotype, anchored in the 5′ region proximal to TNFSF4 and tagged by rs2205960-T after 1000 Genomes phase 1 (v3) imputation. Conditional regression analyses delineate the 5′ risk signal to rs2205960-T and the independent non-risk signal to rs1234314-C. Our case-only and SLE-control cohorts demonstrate robust association of rs2205960-T with autoantibody production. The rs2205960-T is predicted to form part of a decameric motif which binds NF-κBp65 with increased affinity compared to rs2205960-G. ChIP-seq data also indicate NF-κB interaction with the DNA sequence at this position in LCL cells. Our research suggests association of rs2205960-T with SLE across multiple groups and an independent non-risk signal at rs1234314-C. rs2205960-T is associated with autoantibody production and lymphopenia. Our data confirm a global signal at TNFSF4 and a role for the expressed product at multiple stages of lymphocyte dysregulation during SLE pathogenesis. We confirm the validity of trans-ancestral mapping in a complex trait. © 2013 Manku et al.
Resumo:
BACKGROUND: Nonsyndromic cleft lip with or without cleft palate is a relatively common craniofacial defect with multifactorial inheritance. The association of the rs987525 single nucleotide variant, located in a gene desert at 8q24.21 region, has been consistently replicated in European populations. We performed a structured association approach combined with transcriptional analysis of the MYC gene to dissect the role of rs987525 in oral clefting susceptibility in the ethnically admixed Brazilian population. METHODS: We performed the association study conditioned on the individual ancestry proportions in a sample of 563 patients and 336 controls, and in an independent sample of 221 patients and 261 controls. The correlation between rs987525 genotypes and MYC transcriptional levels in orbicularis oris muscle mesenchymal stem cells was also investigated in 42 patients and 4 controls. RESULTS: We found a significant association in the larger sample (p = 0.0016; OR = 1.80 [95% confidence interval {CI}, 1.21-2.69], for heterozygous genotype, and 2.71 [95% CI, 1.47-4.96] for homozygous genotype). We did not find a significant correlation between rs987525 genotypes and MYC transcriptional levels (p = 0.14; r = -0.22, Spearman Correlation). CONCLUSIONS: We present a positive association of rs987525 in the Brazilian population for the first time, and it is likely that the European contribution to our population is driving this association. We also cannot discard a role of rs987515 in MYC regulation, because this locus behaves as an expression quantitative locus of MYC in another tissue. Birth Defects Research (Part A) 94:464-468, 2012. (C) 2012 Wiley Periodicals, Inc.
Resumo:
BACKGROUND & AIMS: Recently, genetic variations in MICA (lead single nucleotide polymorphism [SNP] rs2596542) were identified by a genome-wide association study (GWAS) to be associated with hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC) in Japanese patients. In the present study, we sought to determine whether this SNP is predictive of HCC development in the Caucasian population as well. METHODS: An extended region around rs2596542 was genotyped in 1924 HCV-infected patients from the Swiss Hepatitis C Cohort Study (SCCS). Pair-wise correlation between key SNPs was calculated both in the Japanese and European populations (HapMap3: CEU and JPT). RESULTS: To our surprise, the minor allele A of rs2596542 in proximity of MICA appeared to have a protective impact on HCC development in Caucasians, which represents an inverse association as compared to the one observed in the Japanese population. Detailed fine-mapping analyses revealed a new SNP in HCP5 (rs2244546) upstream of MICA as strong predictor of HCV-related HCC in the SCCS (univariable p=0.027; multivariable p=0.0002, odds ratio=3.96, 95% confidence interval=1.90-8.27). This newly identified SNP had a similarly directed effect on HCC in both Caucasian and Japanese populations, suggesting that rs2244546 may better tag a putative true variant than the originally identified SNPs. CONCLUSIONS: Our data confirms the MICA/HCP5 region as susceptibility locus for HCV-related HCC and identifies rs2244546 in HCP5 as a novel tagging SNP. In addition, our data exemplify the need for conducting meta-analyses of cohorts of different ethnicities in order to fine map GWAS signals.
Resumo:
Rheumatoid arthritis (RA), the most common autoimmune disease, is associated in families with other autoimmune diseases, including insulin-dependent diabetes mellitus (IDDM). Its genetic component has been suggested by familial aggregation (λs = 5), twin studies, and segregation analysis. HLA, which is the only susceptibility locus known, has been estimated to account for one-third of this component. The aim of this paper was to identify new RA loci. A genome scan was performed with 114 European Caucasian RA sib pairs from 97 nuclear families. Linkage was significant only for HLA (P < 2.5⋅10−5) and nominal for 19 markers in 14 other regions (P < 0.05). Four of the loci implicated in IDDM potentially overlap with these regions: the putative IDDM6, IDDM9, IDDM13, and DXS998 loci. The first two of these candidate regions, defined in the RA genome scan by the markers D18S68-D18S61-D18S469 (18q22–23) and D3S1267 (3q13), respectively, were studied in 194 additional RA sib pairs from 164 nuclear families. Support for linkage to chromosome 3 only was extended significantly (P = 0.002). The analysis of all 261 families provided a linkage evidence of P = 0.001 and suggested an interaction between this putative RA locus and HLA. This locus could account for 16% of the genetic component of RA. Candidate genes include those coding for CD80 and CD86, molecules involved in antigen-specific T cell recognition. In conclusion, this first genome scan in RA Caucasian families revealed 14 candidate regions, one of which was supported further by the study of a second set of families.
Resumo:
The major murine systemic lupus erythematosus (SLE) susceptibility locus Sle1 is syntenic to a chromosomal region linked with SLE susceptibility in multiple human studies. Congenic analyses have shown that Sle1 breaks tolerance to chromatin, a necessary step for full disease induction that can be suppressed by specific modifier loci. In the present study, our fine mapping analysis of the location of Sle1 has determined that three loci within this congenic interval, termed Sle1a, Sle1b, and Sle1c, can independently cause a loss of tolerance to chromatin. Each displays a distinctive profile of serological and cellular characteristics, with T and B cell functions being more affected by Sle1a and Sle1b, respectively. The epistatic interactions of Sle1 with other susceptibility loci to cause severe nephritis cannot be accounted, however, by these three loci alone, suggesting the existence of an additional locus, termed Sle1d. These findings indicate that the potent autoimmune phenotype caused by the Sle1 genomic interval reflects the combined impact of four, separate, susceptibility genes. This level of genetic complexity, combined with similar findings in other systems, supports the possibility that many complex trait loci reflect the impact of polymorphisms in linked clusters of genes with related functions.
Resumo:
Various types of physical mapping data were assembled by developing a set of computer programs (Integrated Mapping Package) to derive a detailed, annotated map of a 4-Mb region of human chromosome 13 that includes the BRCA2 locus. The final assembly consists of a yeast artificial chromosome (YAC) contig with 42 members spanning the 13q12-13 region and aligned contigs of 399 cosmids established by cross-hybridization between the cosmids, which were selected from a chromosome 13-specific cosmid library using inter-Alu PCR probes from the YACs. The end sequences of 60 cosmids spaced nearly evenly across the map were used to generate sequence-tagged sites (STSs), which were mapped to the YACs by PCR. A contig framework was generated by STS content mapping, and the map was assembled on this scaffold. Additional annotation was provided by 72 expressed sequences and 10 genetic markers that were positioned on the map by hybridization to cosmids.
Resumo:
Type 1 diabetes (TID) susceptibility locus, IDDM8, has been accurately mapped to 200 kilobases at the terminal end of chromosome 6q27. This is within the region which harbours a cluster of three genes encoding proteasome subunit beta 1 (PMSB1), TATA-box binding protein (TBP) and a homologue of mouse programming cell death activator 2 (PDCD2). In this study, we evaluated whether these genes contribute to TID susceptibility using the transmission disequilibrium test of the data set from 114 affected Russian simplex families. The A allele of the G/A1180 single nucleotide polymorphism (SNP) at the PDCD2 gene, which was significant in its preferential transfer from parents to diabetic children (75 transmissions vs. 47 non-transmissionS, x(2) = 12.85, P corrected = 0.0038), was found to be associated with T1D. G/A1180 dimorphism and two other SNPs, C/T771 TBP and G/T(-271) PDCD2, were shown to share three common haplotypes, two of which (A-T-G and A-T-T) have been associated with higher development risk of TID. The third haplotype (G-T-G) was related to having a lower risk of disease. These findings suggest that the PDCD2 gene is a likely susceptibility gene for TID within IDDM8. However, it was not possible to exclude the TBP gene from being another putative susceptibility gene in this region. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Endometriosis is a common gynecological disease that affects up to 10% of women in their reproductive years. It causes pelvic pain, severe dysmenorrhea, and subfertility. The disease is defined as the presence of tissue resembling endometrium in sites outside the uterus. Its cause remains uncertain despite 150 years of hypothesis-driven research, and thus the therapeutic options are limited. Disease predisposition is inherited as a complex genetic trait, which provides an alternative route to understanding the disease. We seek to identify susceptibility loci, using a positional-cloning approach that starts with linkage analysis to identify genomic regions likely to harbor these genes. We conducted a linkage study of 1,176 families ( 931 from an Australian group and 245 from a U. K. group), each with at least two members-mainly affected sister pairs-with surgically diagnosed disease. We have identified a region of significant linkage on chromosome 10q26 ( maximum LOD score [MLS] of 3.09; genomewide P = .047) and another region of suggestive linkage on chromosome 20p13 MLS p 2.09). Minor peaks with MLS > 1.0) were found on chromosomes 2, 6, 7, 8, 12, 14, 15, and 17. This is the first report of linkage to a major locus for endometriosis. The findings will facilitate discovery of novel positional genetic variants that influence the risk of developing this debilitating disease. Greater understanding of the aberrant cellular and molecular mechanisms involved in the etiology and pathophysiology of endometriosis should lead to better diagnostic methods and targeted treatments.
Resumo:
Many twin studies have identified sex differences in the influence of genetic and environmental factors on smoking behaviors. We explore the evidence for sex differences for smoking initiation and cigarette consumption in a sample of Australian twin families, and extend these models to incorporate sex differences in linkage analyses for these traits. We further examine the impact of including or excluding non-smokers in genetic analyses of tobacco consumption. Accounting for sex differences improved linkage results in some instances. We identified one region suggestive of linkage on chromosome 11p12. This locus, as well as another region identified on chromosome 6p12, replicates regions identified in previous studies.
Resumo:
Linkage studies have identified the human leukocyte antigen (HLA)-DRB1 as a putative rheumatoid arthritis (RA) susceptibility locus (SL). Nevertheless, it was estimated that its contribution was partial, suggesting that other non-HLA genes may play a role in RA susceptibility. To test this hypothesis, we conducted microarray transcription profiling of peripheral blood mononuclear cells in 15 RA patients and analyzed the data, using bioinformatics programs (significance analysis of microarrays method and GeneNetwork), which allowed us to determine the differentially expressed genes and to reconstruct transcriptional networks. The patients were grouped according to disease features or treatment with tumor necrosis factor blocker. Transcriptional networks that were reconstructed allowed us to identify the interactions occurring between RA SL and other genes, for example, HLA-DRB1 interacting with FNDC3A (fibronectin type III domain containing 3A). Given that fibronectin fragments can stimulate mediators of matrix and cartilage destruction in RA, this interaction is of special interest and may contribute to a clearer understanding of the functional role of HLA-DRB1 in RA pathogenesis.