7 resultados para SUPERORGANISM
Resumo:
Insects provide crucial ecosystem services for human food security and maintenance of biodiversity. Therefore, major declines in wild insects combined with losses of managed bees have raised great concern. Recent data suggest that honey bees appear to be less susceptible to stressors compared to other species. Here, we argue that eusociality plays a key role for the susceptibility of insects to environmental stressors due to superorganism resilience, which can be defined as the ability to tolerate the loss of somatic cells (= workers) as long as the germ line (= reproduction) is maintained. Life history and colony size appear critical for such resilience. Future conservation efforts should take superorganism resilience into account to safeguard ecosystem services by insects.
Resumo:
In contrast to marking of the location of resources or sexual partners using single-spot pheromone sources, pheromone paths attached to the substrate and assisting orientation are rarely found among flying organisms. However, they do exist in meliponine bees (Apidae, Apinae, Meliponini), commonly known as stingless bees, which represent a group of important pollinators in tropical forests. Worker bees of several Neotropical meliponine species, especially in the genus Scaptotrigona Moure 1942, deposit pheromone paths on substrates between highly profitable resources and their nest. In contrast to past results and claims, we find that these pheromone paths are not an indispensable condition for successful recruitment but rather a means to increase the success of recruiters in persuading their nestmates to forage food at a particular location. Our results are relevant to a speciation theory in scent path-laying meliponine bees, such as Scaptotrigona. In addition, the finding that pheromone path-laying bees are able to recruit to food locations even across barriers such as large bodies of water affects tropical pollination ecology and theories on the evolution of resource communication in insect societies with a flying worker caste.
Resumo:
Like ants and termites some species of stingless bees (Meliponini), which are very important pollinators in the tropics, use pheromone trails to communicate the location of a food source. We present data on the communicative role of mandibular gland secretions of Meliponini that resolve a recent controversy about their importance in the laying of such trails. Volatile constituents of the mandibular glands have been erroneously thought both to elicit aggressive/defensive behaviour and to signal food source location. We studied Trigona spinipes and Scaptotrigona aff. depilis (`postica`), two sympatric species to which this hypothesis was applied. Using extracts of carefully dissected glands instead of crude cephalic extracts we analysed the substances contained in the mandibular glands of worker bees. Major components of the extracts were 2-heptanol (both species), nonanal (T. spinipes), benzaldehyde and 2-tridecanone (S. aff. depilis). The effect of mandibular gland extracts and of individual components thereof on the behaviour of worker bees near their nest and at highly profitable food sources was consistent. Independent of the amount of mandibular gland extract applied, the bees overwhelmingly reacted with defensive behaviour and were never attracted to feeders scented with mandibular gland extract or any of the synthetic chemicals tested. Both bee species are capable of using mandibular gland secretions for intra-and interspecific communication of defence and aggression and share 2-heptanol as a major pheromone compound. While confirming the role of the mandibular glands in nest defence, our experiments provide strong evidence against their role in food source signalling.
Resumo:
Competition for floral resources is a key force shaping pollinator communities, particularly among social bees. The ability of social bees to recruit nestmates for group foraging is hypothesized to be a major factor in their ability to dominate rich resources such as mass-flowering trees. We tested the role of group foraging in attaining dominance by stingless bees, eusocial tropical pollinators that exhibit high diversity in foraging strategies. We provide the first experimental evidence that meliponine group foraging strategies, large colony sizes and aggressive behavior form a suite of traits that enable colonies to improve dominance of rich resources. Using a diverse assemblage of Brazilian stingless bee species and an array of artificial ""flowers"" that provided a sucrose reward, we compared species` dominance and visitation under unrestricted foraging conditions and with experimental removal of group-foraging species. Dominance does not vary with individual body size, but rather with foraging group size. Species that recruit larger numbers of nestmates (Scaptotrigona aff. depilis, Trigona hyalinata, Trigona spinipes) dominated both numerically (high local abundance) and behaviorally (controlling feeders). Removal of group-foraging species increased feeding opportunities for solitary foragers (Frieseomelitta varia, Melipona quadrifasciata and Nannotrigona testaceicornis). Trigona hyalinata always dominated under unrestricted conditions. When this species was removed, T. spinipes or S. aff. depilis controlled feeders and limited visitation by solitary-foraging species. Because bee foraging patterns determine plant pollination success, understanding the forces that shape these patterns is crucial to ensuring pollination of both crops and natural areas in the face of current pollinator declines.
Resumo:
An appreciation of the importance of interactions between microbes and multicellular organisms is currently driving research in biology and biomedicine. Many human diseases involve interactions between the host and the microbiota, so investigating the mechanisms involved is important for human health. Although microbial ecology measurements capture considerable diversity of the communities between individuals, this diversity is highly problematic for reproducible experimental animal models that seek to establish the mechanistic basis for interactions within the overall host-microbial superorganism. Conflicting experimental results may be explained away through unknown differences in the microbiota composition between vivaria or between the microenvironment of different isolated cages. In this position paper, we propose standardised criteria for stabilised and defined experimental animal microbiotas to generate reproducible models of human disease that are suitable for systematic experimentation and are reproducible across different institutions.
Resumo:
Large numbers of microorganisms colonise the skin and mucous membranes of animals, with their highest density in the lower gastrointestinal tract. The impact of these microbes on the host can be demonstrated by comparing animals (usually mice) housed under germ-free conditions, or colonised with different compositions of microbes. Inbreeding and embryo manipulation programs have generated a wide variety of mouse strains with a fixed germ-line (isogenic) and hygiene comparisons robustly show remarkably strong interactions between the microbiota and the host, which can be summarised in three axioms. (I) Live microbes are largely confined to their spaces at body surfaces, provided the animal is not suffering from an infection. (II) There is promiscuous molecular exchange throughout the host and its microbiota in both directions [1]. (III) Every host organ system is profoundly shaped by the presence of body surface microbes. It follows that one must draw a line between live microbial and host “spaces” (I) to understand the crosstalk (II and III) at this interesting interface of the host-microbial superorganism. Of course, since microbes can adapt to very different niches, there has to be more than one line. In this issue of EMBO Reports, Johansson and colleagues have studied mucus, which is the main physical frontier for most microbes in the intestinal tract: they report how different non-pathogenic microbiota compositions affect its permeability and the functional protection of the epithelial surface [2].
Resumo:
The Borg, a collective of humanoid cyborgs linked together in a hive-mind and modeled on the earthly superorganisms of ant colonies and beehives, has been the most feared alien race in the Star Trek universe. The formidable success of the Borg in assimilating their foes corresponds to the astounding success of superorganisms in our own biosphere. Yet the Borg also serves as a metaphor for another collective of biological entities known as the corporation. In the Anthropocene epoch, corporations have become the most powerful force on the planet; their influence on the social world and the environment exceeds any government and may determine the continued sustainability of human life. Corporations have been described as people and as machines, but neither metaphor accurately describes their essence or contributes to an understanding that might resist their power. This paper reframes our understanding of the corporation by examining the metaphors that are used to describe it, and by suggesting an entirely new metaphor viewing the Borg and the corporation through the lens of sociobiology. I will argue that the corporation is a new form of superorganism that has become the dominant species on the planet and that the immense, intractable power of a globalized, corporate hive-mind has become the principal obstacle to addressing the planetary emergency of climate change. Reframing our metaphoric understanding of corporations as biological entities in the planetary biosphere may enable us to imagine ways to resist their increasing dominance and create a sustainable future.