607 resultados para STEEP
Resumo:
An improved understanding of the characteristics of the pre-discharge current pulses in GIS will lead to improved analyses of the results from the UHF partial discharge detection method. This paper presents the characteristics of the first pre-discharge current pulses from a point-to-plain geometry at 1 bar absolute under both polarities of a 1.1/80 us lightning impulse. The analysis has shown that the pre-discharge current wave shape, peak current magnitude and charge is effected by the instantaneous voltage at which the pre- discharge took place as well as the polarity of the active electrode. The measured results show that protrusions on the electrodes have slower wave shape parameters than those reported for free conducting particles.
Resumo:
The spectral index-luminosity relationship for steep-spectrum cores in galaxies and quasars has been investigated, and it is found that the sample of galaxies supports earlier suggestions of a strong correlation, while there is weak evidence for a similar relationship for the quasars. It is shown that a strong spectral index-luminosity correlation can be used to set an upper limit to the velocities of the radio-emitting material which is expelled from the nucleus in the form of collimated beams or jets having relativistic bulk velocities. The data on cores in galaxies indicate that the Lorentz factors of the radiating material are less than about 2.
Resumo:
Numerical modeling is used to explain the origin of the large ON/OFF ratios, ultralow leakage, and high ON-current densities exhibited by back-end-of-the-line-friendly access devices based on copper-containing mixed-ionic-electronic-conduction (MIEC) materials. Hall effect measurements confirm that the electronic current is hole dominated; a commercial semiconductor modeling tool is adapted to model MIEC. Motion of large populations of copper ions and vacancies leads to exponential increases in hole current, with a turn-ON voltage that depends on material bandgap. Device simulations match experimental observations as a function of temperature, electrode aspect ratio, thickness, and device diameter.
Resumo:
采用面一面接触的三维离散元刚性块体模型,从实测节理面中取出其中的三组,按照其倾向、倾角和节理间距将三峡永久船闸未开挖的区域划分为10~5个离散单元,通过施加力边界条件,给出了与实测初始地应力场接近的数值模拟结果;然后,分4步模拟了永久船闸的开挖过程。计算结果表明:开挖过程会引起节理面出现张开趋势,个别岩体还会沿着节理面滑移。岩体位移的不对称现象较为自然地说明了由节理引起的岩体各向异性特征。
Resumo:
An analytical fluid model for resonance absorption during the oblique incidence by femtosecond laser pulses on a small-scale-length density plasma [k(0)L is an element of(0.1,10)] is proposed. The physics of resonance absorption is analyzed more clearly as we separate the electric field into an electromagnetic part and an electrostatic part. It is found that the characteristics of the physical quantities (fractional absorption, optimum angle, etc.) in a small-scale-length plasma are quite different from the predictions of classical theory. Absorption processes are generally dependent on the density scale length. For shorter scale length or higher laser intensity, vacuum heating tends to be dominant. It is shown that the electrons being pulled out and then returned to the plasma at the interface layer by the wave field can lead to a phenomenon like wave breaking. This can lead to heating of the plasma at the expanse of the wave energy. It is found that the optimum angle is independent of the laser intensity while the absorption rate increases with the laser intensity, and the absorption rate can reach as high as 25%. (c) 2006 American Institute of Physics.
Resumo:
Erosion is concentrated in steep landscapes such that, despite accounting for only a small fraction of Earth’s total surface area, these areas regulate the flux of sediment to downstream basins, and their rugged morphology records transient changes (or lack thereof) in geologic and climatic forcing. Steep landscapes are geomorphically active; large sediment fluxes and rapid landscape evolution rates can create or destroy habitat for humans and wildlife alike, and landslides, debris flows, and floods common in mountainous areas represent a persistent natural and structural hazard. Despite the central role that steep landscapes play in the geosciences and in landscape management, the processes controlling their evolution have been poorly studied compared to lower-gradient areas. This thesis focuses on the basic mechanics of sediment transport and bedrock incision in steep landscapes, as these are the fundamental processes which set the pace and style of landscape evolution. Chapter 1 examines the spatial distribution of slow-moving landslides; these landslides can dominate sediment fluxes to river networks, but the controls on their occurrence are poorly understood. Using a case-study along the San Andreas Fault, California, I show that slow-moving landslides preferentially occur near the fault, suggesting a rock-strength control on landslide distribution. Chapter 2 provides the first field-measurements of incipient sediment motion in streams steeper than 14% and shows a large influence of slope-dependent flow hydraulics and grain-scale roughness on particle motion. Chapter 3 presents experimental evidence for bedrock erosion by suspended sediment, suggesting that, in contrast to prevailing theoretical predictions, suspension-regime transport in steep streams can be the dominant erosion agent. Steep streams are often characterized by the presence of waterfalls and bedrock steps which can have locally high rates of erosion; Chapters 4 and 5 present newly developed, experimentally validated theory on sediment transport through and bedrock erosion in waterfall plunge pools. Finally, Chapter 6 explores the formation of a bedrock slot canyon where interactions between sediment transport and bedrock incision lead to the formation of upstream-propagating bedrock step-pools and waterfalls.
Resumo:
Observations of waves, setup, and wave-driven mean flows were made on a steep coral forereef and its associated lagoonal system on the north shore of Moorea, French Polynesia. Despite the steep and complex geometry of the forereef, and wave amplitudes that are nearly equal to the mean water depth, linear wave theory showed very good agreement with data. Measurements across the reef illustrate the importance of including both wave transport (owing to Stokes drift), as well as the Eulerian mean transport when computing the fluxes over the reef. Finally, the observed setup closely follows the theoretical relationship derived from classic radiation stress theory, although the two parameters that appear in the model-one reflecting wave breaking, the other the effective depth over the reef crest-must be chosen to match theory to data. © 2013 American Meteorological Society.
Resumo:
A new method is developed for approximating the scattering of linear surface gravity waves on water of varying quiescent depth in two dimensions. A conformal mapping of the fluid domain onto a uniform rectangular strip transforms steep and discontinuous bed profiles into relatively slowly varying, smooth functions in the transformed free-surface condition. By analogy with the mild-slope approach used extensively in unmapped domains, an approximate solution of the transformed problem is sought in the form of a modulated propagating wave which is determined by solving a second-order ordinary differential equation. This can be achieved numerically, but an analytic solution in the form of a rapidly convergent infinite series is also derived and provides simple explicit formulae for the scattered wave amplitudes. Small-amplitude and slow variations in the bedform that are excluded from the mapping procedure are incorporated in the approximation by a straightforward extension of the theory. The error incurred in using the method is established by means of a rigorous numerical investigation and it is found that remarkably accurate estimates of the scattered wave amplitudes are given for a wide range of bedforms and frequencies.
Resumo:
For a targeted observations case, the dependence of the size of the forecast impact on the targeted dropsonde observation error in the data assimilation is assessed. The targeted observations were made in the lee of Greenland; the dependence of the impact on the proximity of the observations to the Greenland coast is also investigated. Experiments were conducted using the Met Office Unified Model (MetUM), over a limited-area domain at 24-km grid spacing, with a four-dimensional variational data assimilation (4D-Var) scheme. Reducing the operational dropsonde observation errors by one-half increases the maximum forecast improvement from 5% to 7%–10%, measured in terms of total energy. However, the largest impact is seen by replacing two dropsondes on the Greenland coast with two farther from the steep orography; this increases the maximum forecast improvement from 5% to 18% for an 18-h forecast (using operational observation errors). Forecast degradation caused by two dropsonde observations on the Greenland coast is shown to arise from spreading of data by the background errors up the steep slope of Greenland. Removing boundary layer data from these dropsondes reduces the forecast degradation, but it is only a partial solution to this problem. Although only from one case study, these results suggest that observations positioned within a correlation length scale of steep orography may degrade the forecast through the anomalous upslope spreading of analysis increments along terrain-following model levels.
Resumo:
Recent aircraft measurements, primarily in the extratropics, of the horizontal variance of nitrous oxide (N2O) and ozone (O3) in the middle stratosphere indicate that horizontal spectra of the tracer variance scale nearly as k−2, where k is the spatial wavenumber along the aircraft flight track [Strahan and Mahlman, 1994; Bacmeister et al., 1996]. This spectral scaling has been regarded as inconsistent with the accepted picture of stratospheric tracer motion; large-scale quasi-two-dimensional tracer advection typically yields a k−1 scaling (i.e., the classical Batchelor spectrum). In this paper it is argued that the nearly k−2 scaling seen in the measurements is a natural outcome of quasi-two-dimensional filamentation of the polar vortex edge. The accepted picture of stratospheric tracer motion can thus be retained: no additional physical processes are needed to account for deviations from the Batchelor spectrum. Our argument is based on the finite lifetime of tracer filaments and on the “singularity spectrum” associated with a one-dimensional field composed of randomly spaced jumps in concentration.