866 resultados para SPRAY COATING
Resumo:
One of the most interesting alternatives for replacement of hard chrome plating is tungsten carbide thermal spray coating applied by the high velocity oxy-fuel (HVOF) process which presents a safer, cleaner and less expensive alternative to chromium plating. The objective of this research is to compare the influence of the tungsten carbide-17cobalt (WC- 17Co) coating applied by high velocity oxy fuel (HVOF) process with that of hard-chromium electroplating on the fatigue strength and abrasive wear of AISI 4340 steel.
Resumo:
Fatigue failure is a result of a crack initiation and propagation, in consequence of a cyclical load. In aeronautical components as landing gear the fatigue strength is an important parameter to be considered in project, as well as the corrosion and wear resistance.The thermal sprayed HVOF technology it's normally used to protect components against wear and corrosion, and are being considerate an alternative to replace chromium by the aeronautical industry. With respect to fatigue life, the HVOF technique induces residual stress on the interface. In the case of tensile residual stresses, the initiation and propagation phases of fatigue process are accelerated; on the other hand, compressive residual stresses close to the surface may increase fatigue life. The technique to improve the coated materials fatigue strength is the shot peening process, which induces residual stress in the surface in order to delay the nucleation and propagation process.The aim of present study is to compare the influence of WC-10 Ni coating applied by HVOF on the fatigue strength of AISI 4340 steel, with and without shot peening. S-N curves were obtained in axial fatigue tests for material base, and tungsten carbide coated specimens. (C) 2010 Published by Elsevier Ltd.
Resumo:
Currently, high-strength materials, particularly AISI 4340 steel, are used in several landing gear components. Due to the high resistance to wear and corrosion required, the components are usually coating by hard chromium. This treatment produces waste, such as Cr+ 6 (hexavalent chromium), generally after applying the coating of hard chromium which is harmful to health and the environment. The process HVOF (High-velocity-oxygen-fuel) is considered a promising technique for deposition of hard chromium alternative coatings, for example, coatings based on tungsten carbide. This technique provides high hardness and good wear strength and more resistance to fatigue when compared to AISI 4340 hard chromium coated. To minimize loss fatigue due to the process of deposition, shot peening is used to obtain a compressive residual stress. The aim of this study was to analyze the effects of the tungsten carbide thermal spray coating applied by the HVOF, in comparison to the conventional hard chromium electroplating on the AISI 4340 high strength steel behavior in fatigue. Optical microscopy and scanning electron microscopy were used to observe crack origin sites, thickness and adhesion of the coating. (C) 2010 Published by Elsevier Ltd.
Resumo:
In cases of decorative and functional applications, chromium results in protection against wear and corrosion combined with chemical resistance and good lubricity. However, pressure to identify alternatives or to improve conventional chromium electroplating mechanical characteristics has increased in recent years, related to the reduction in the fatigue strength of the base material and to environmental requirements. The high efficiency and fluoride-free hard chromium electroplating is an improvement to the conventional process, considering chemical and physical final properties. One of the most interesting, environmentally safer and cleaner alternatives for the replacement of hard chrome plating is tungsten carbide thermal spray coating, applied by the high velocity oxy-fuel (HVOF) process. The aim of this study was to analyse the effects of the tungsten carbide thermal spray coating applied by the HP/HVOF process and of the high efficiency and fluoride-free hard chromium electroplating (in the present paper called 'accelerated'), in comparison to the conventional hard chromium electroplating on the AISI 4340 high strength steel behaviour in fatigue, corrosion, and abrasive wear tests. The results showed that the coatings were damaging to the AISI 4340 steel behaviour when submitted to fatigue testing, with the tungsten carbide thermal spray coatings showing the better performance. Experimental data from abrasive wear tests were conclusive, indicating better results from the WC coating. Regarding corrosion by salt spray test, both coatings were completely corroded after 72 h exposure. Scanning electron microscopy technique (SEM) and optical microscopy were used to observe crack origin sites, thickness and adhesion in all the coatings and microcrack density in hard chromium electroplatings, to aid in the results analysis. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Spray coating was used to produce thallium bromide samples on glass substrates. The influence of several fabrication parameters on the final structural properties of the samples was investigated. Substrate position, substrate temperature, solution concentration, carrying gas, and solution flow were varied systematically, the physical deposition mechanism involved in each case being discussed. Total deposition time of about 3.5 h can lead to 62-mu m-thick films, comprising completely packed micrometer-sized crystalline grains. X-ray diffraction and scanning electron microscopy were used to characterize the samples. On the basis of the experimental data, the optimum fabrication conditions were identified. The technique offers an alternative method for fast, cheap fabrication of large-area devices for the detection of high-energy radiation, i.e., X-rays and gamma-rays, in medical imaging.
Resumo:
The effects of cold spray coating and substrate surface preparation on crack initiation under cyclic loading have been studied on Al2024 alloy specimens. Commercially pure (CP) aluminum feedstock powder has been deposited on Al2024-T351 samples using a cold-spray coating technique known as high velocity particle consolidation. Substrate specimens were prepared by surface grit blasting or shot peening prior to coating. The fatigue behavior of both coated and uncoated specimens was then tested under rotating bend conditions at two stress levels, 180 MPa and 210 MPa. Scanning electron microscopy was used to analyze failure surfaces and identify failure mechanisms. The results indicate that the fatigue strength was significantly improved on average, up to 50% at 180 MPa and up to 38% at 210 MPa, by the deposition of the cold-sprayed CP-Al coatings. Coated specimens first prepared by glass bead grit blasting experienced the largest average increase in fatigue life over bare specimens. The results display a strong dependency of the fatigue strength on the surface preparation and cold spray parameters
Spray deposition of exfoliated MoS2 flakes as hole transport layer in perovskite-based photovoltaics
Resumo:
We propose the use of solution-processed molybdenum disulfide (MoS2) flakes as hole transport layer (HTL) for metal-organic perovskite solar cells. MoS2 bulk crystals are exfoliated in 2-propanol and deposited on perovskite layers by spray coating. We fabricated cells with glass/FTO/compact-TiO2/mesoporous-TiO2/CH3NH3PbI3/spiro- OMeTAD/Au structure and cells with the same structure but with MoS2 flakes as HTL instead of spiro-OMeTAD, the most widely used HTL. The electrical characterization of the cells with MoS2 as HTL show promising power conversion efficiency -η- of 3.9% with respect to cells with pristine spiro-OMeTAD (η=3.1%). Endurance test on 800-hour shelf life has shown higher stability for the MoS2–based cells (ΔPCE/PCE=-17%) with respect to the doped spiro-OMeTAD-based one (ΔPCE/PCE =-45%). Further improvements are expected with the optimization of the MoS2 deposition process
Resumo:
The dihexyl substituted poly (3,4-propylenedioxythiophene) (PProDOT-Hx(2)) thin films uniformly deposited by cost effective spray coating technique on transparent conducting oxide coated substrates. The electro-optical properties of PProDOT-Hx(2) films were studied by UV-Vis spectroscopy that shows the color contrast about 45% with coloration efficiency of approximate to 185cm(2)/C. The electrochemical properties of PProDOT-Hx(2) films were studied by cyclic voltammetry and AC impedance techniques. The cyclic voltammogram shows that redox reaction of films are diffusion controlled and ions transportation will be faster on the polymer film at higher scan rate. Impedance spectra indicate that polymer films are showing interface charge transfer process as well as capacitive behavior between the electrode and electrolyte. The XRD of the PProDOT-Hx(2) thin films revealed that the films are in amorphous nature, which accelerates the transportation of ions during redox process.
Resumo:
During thermal spraying, hot particles impact on a colder substrate. This interaction of crystalline copper nanoparticles and copper substrate is modelled, using MD simulation. The quantitative results of the impacts at different velocities and temperatures are evaluated using a newly defined flattening aspect ratio. This ratio between the maximum diameter after the impact and the height of the splat increases with increasing Reynolds numbers until a critical value is reached. At higher Reynolds numbers the flattening aspect ratio decreases again, as the kinetic energy of the particle leads to increasing substrate temperature and, therefore, decreases the substrate resistance. Thus, the particle penetrates into the substrate and deforms less.
Resumo:
It is known that chromium electroplating is related to the reduction in the fatigue strength of base metal. However, chromium results in protection against wear and corrosion combined with chemical resistance and good lubricity. Environmental requirements are an important point to be considered in the search for possible alternatives to hard chrome plating. Aircraft landing gear manufactures are considering WC thermal spray coating applied by the high-velocity oxygen-fuel (HVOF) process an alternative candidate, which shows performance at least comparable to results, obtained for hard chrome plating. The aim of this study is to compare the influence of WC-17Co and WC-10Co-4Cr coatings applied by HVOF process and hard chromium electroplating on the fatigue strength of AISI 4340 steel, with and without shot peening. S-N curves were obtained in axial fatigue test for base material, chromium plated and tungsten carbide coated specimens. Tungsten carbide thermal spray coating results in higher fatigue strength when compared to hard chromium electroplated. Shot peening prior to thermal spraying showed to be an excellent alternative to increase fatigue strength of AISI 4340 steel. Experimental data showed higher axial fatigue and corrosion resistance in salt fog exposure for samples WC-10Co-4Cr HVOF coated when compared with WC-17Co. Fracture surface analysis by scanning electron microscopy (SEM) indicated the existence of a uniform coverage of nearly all substrates. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The tendency of the aircraft industry is to enhance customer value by improving performance and reducing environmental impact. In view of availability, aluminum alloys have a historically tendency to faster insertion due to their lower manufacturing and operated production infrastructure. In landing gear components, wear and corrosion control of many components is accomplished by surface treatments of chrome electroplating on steel or anodizing of aluminum. One of the most interesting environmentally safer and cleaner alternatives for the replacement of hard chrome plating or anodizing is tungsten carbide thermal spray coating, applied by the high velocity oxy fuel (HVOF) process. However, it was observed that residual stresses originating from these coatings reduce the fatigue strength of a component.An effective process as shot peening treatment, considered to improve the fatigue strength, pushes the crack sources beneath the surface in most of medium and high cycle cases, due to the compressive residual stress field induced. The objective of this research is to evaluate a tungsten carbide cobalt (WC-Co) coating applied by the high velocity oxy fuel (HVOF) process, used to replace anodizing. Anodic films were grown on 7050-T7451 aluminum alloy by sulfuric acid anodizing, chromic acid anodizing and hard anodizing. The influence on axial fatigue strength of anodic films grown on the aluminum alloy surface is to degrade the stress-life performance of the base material. Three groups of specimens were prepared and tested in axial fatigue to obtain S-N curves: base material, base material coated by HVOF and base material shot peened and coated.Experimental results revealed increase in the fatigue strength of Al 7050-T7451 alloy associated with the WC 17% Co coating. on the other hand, a reduction in fatigue life occurred in the shot peened and coated condition. Scanning electron microscopy technique and optical microscopy were used to observe crack origin sites, thickness and coating/substrate adhesion. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Even though titanium dioxide photocatalysis has been promoted as a leading green technology for water purification, many issues have hindered its application on a large commercial scale. For the materials scientist the main issues have centred the synthesis of more efficient materials and the investigation of degradation mechanisms; whereas for the engineers the main issues have been the development of appropriate models and the evaluation of intrinsic kinetics parameters that allow the scale up or re-design of efficient large-scale photocatalytic reactors. In order to obtain intrinsic kinetics parameters the reaction must be analysed and modelled considering the influence of the radiation field, pollutant concentrations and fluid dynamics. In this way, the obtained kinetic parameters are independent of the reactor size and configuration and can be subsequently used for scale-up purposes or for the development of entirely new reactor designs. This work investigates the intrinsic kinetics of phenol degradation over titania film due to the practicality of a fixed film configuration over a slurry. A flat plate reactor was designed in order to be able to control reaction parameters that include the UV irradiance, flow rates, pollutant concentration and temperature. Particular attention was paid to the investigation of the radiation field over the reactive surface and to the issue of mass transfer limited reactions. The ability of different emission models to describe the radiation field was investigated and compared to actinometric measurements. The RAD-LSI model was found to give the best predictions over the conditions tested. Mass transfer issues often limit fixed film reactors. The influence of this phenomenon was investigated with specifically planned sets of benzoic acid experiments and with the adoption of the stagnant film model. The phenol mass transfer coefficient in the system was calculated to be km,phenol=8.5815x10-7Re0.65(ms-1). The data obtained from a wide range of experimental conditions, together with an appropriate model of the system, has enabled determination of intrinsic kinetic parameters. The experiments were performed in four different irradiation levels (70.7, 57.9, 37.1 and 20.4 W m-2) and combined with three different initial phenol concentrations (20, 40 and 80 ppm) to give a wide range of final pollutant conversions (from 22% to 85%). The simple model adopted was able to fit the wide range of conditions with only four kinetic parameters; two reaction rate constants (one for phenol and one for the family of intermediates) and their corresponding adsorption constants. The intrinsic kinetic parameters values were defined as kph = 0.5226 mmol m-1 s-1 W-1, kI = 0.120 mmol m-1 s-1 W-1, Kph = 8.5 x 10-4 m3 mmol-1 and KI = 2.2 x 10-3 m3 mmol-1. The flat plate reactor allowed the investigation of the reaction under two different light configurations; liquid and substrate side illumination. The latter of particular interest for real world applications where light absorption due to turbidity and pollutants contained in the water stream to be treated could represent a significant issue. The two light configurations allowed the investigation of the effects of film thickness and the determination of the catalyst optimal thickness. The experimental investigation confirmed the predictions of a porous medium model developed to investigate the influence of diffusion, advection and photocatalytic phenomena inside the porous titania film, with the optimal thickness value individuated at 5 ìm. The model used the intrinsic kinetic parameters obtained from the flat plate reactor to predict the influence of thickness and transport phenomena on the final observed phenol conversion without using any correction factor; the excellent match between predictions and experimental results provided further proof of the quality of the parameters obtained with the proposed method.
Resumo:
Ideal coating materials for implants should be able to induce excellent osseointegration, which requires several important parameters, such as good bonding strength, limited inflammatory reaction, balanced osteoclastogenesis and osteogenesis, to gain well-functioning coated implants with long-term life span after implantation. Bioactive elements, like Sr, Mg and Si, have been found to play important roles in regulating the biological responses. It is of great interest to combine bioactive elements for developing bioactive coatings on Ti-6Al-4V orthopedic implants to elicit multidirectional effects on the osseointegration. In this study, Sr, Mg and Si-containing bioactive Sr2MgSi2O7 (SMS) ceramic coatings on Ti-6Al-4V were successfully prepared by plasma-spray coating method. The prepared SMS coatings have significantly higher bonding strength (~37MPa) than conventional pure hydroxyapatite (HA) coatings (mostly in the range of 15-25 MPa). It was also found that the prepared SMS coatings switch the macrophage phenotype into M2 extreme, inhibiting the inflammatory reaction via the inhibition of Wnt5A/Ca2+ and Toll-like receptor (TLR) pathways of macrophages. In addition, the osteoclastic activities were also inhibited by SMS coatings. The expression of osteoclastogenesis related genes (RANKL and MCSF) in bone marrow derived mesenchymal cells (BMSCs) with the involvement of macrophages was decreased, while OPG expression was enhanced on SMS coatings compared to HA coatings, indicating that SMS coatings also downregulated the osteoclastogenesis. However, the osteogenic differentiation of BMSCs with the involvement of macrophages was comparable between SMS and HA coatings. Therefore, the prepared SMS coatings showed multidirectional effects, such as improving bonding strength, reducing inflammatory reaction and downregulating osteoclastic activities, but maintaining a comparable osteogenesis, as compared with HA coatings. The combination of bioactive elements of Sr, Mg and Si into bioceramic coatings can be a promising method to develop bioactive implants with multifunctional properties for orthopaedic application.
Resumo:
A paradigm shift has taken place in which bone implant materials has gone from being relatively inert to having immunomodulatory properties, indicating the importance of immune response when these materials interact with the host tissues. It has therefore become important to endow the implant materials with immunomodulatory properties favouring osteogenesis and osseointegration. Strontium, zinc and silicon are bioactive elements that have important roles in bone metabolism and that also elicit significant immune responses. In this study, Sr-, Zn- and Si-containing bioactive Sr2ZnSi2O7 (SZS) ceramic coatings on Ti–6Al–4V were successfully prepared by a plasma-spray coating method. The SZS coatings exhibited slow release of the bioactive ions with significantly higher bonding strength than hydroxyapatite (HA) coatings. SZS-coated Ti–6Al–4V elicited significant effects on the immune cells, inhibiting the release of pro-inflammatory cytokines and fibrosis-enhancing factors, while upregulating the expression of osteogenic factors of macrophages; moreover, it could also inhibit the osteoclastic activities. The RANKL/RANK pathway, which enhances osteoclastogenesis, was inhibited by the SZS coatings, whereas the osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs) was significantly enhanced by the SZS coatings/macrophages conditioned medium, probably via the activation of BMP2 pathway. SZS coatings are, therefore, a promising material for orthopaedic applications, and the strategy of manipulating the immune response by a combination of bioactive elements with controlled release has the potential to endow biomaterials with beneficial immunomodulatory properties.