998 resultados para SONOCHEMICAL SYNTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline Ce1-xFexO2-delta (0 <= x <= 0.45) and Ce0.65Fe0.33Pd0.02O2-delta of similar to 4 nm sizes were synthesized by a sonochemical method using diethyletriamine (DETA) as a complexing agent. Compounds were characterized by powder X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS) and transmission electron microscopy (TEM). Ce1-xFexO2-delta (0 <= x <= 0.45) and Ce0.65Fe0.33Pd0.02O2-delta crystallize in fluorite structure where Fe is in +3, Ce is in +4 and Pd is in +2 oxidation state. Due to substitution of smaller Fe3+ ion in CeO2, lattice oxygen is activated and 33% Fe substituted CeO2 i.e. Ce0.67Fe0.33O1.835 reversibly releases 0.31O] up to 600 degrees C which is higher or comparable to the oxygen storage capacity of CeO2-ZrO2 based solid solutions (Catal. Today 2002, 74, 225-234). Due to interaction of redox potentials of Pd2+/0(0.89 V) and Fe3+/2+ (0.77 V) with Ce4+/3+ (1.61 V), Pd ion accelerates the electron transfer from Fe2+ to Ce4+ in Ce0.65Fe0.33Pd0.02O1.815, making it a high oxygen storage material as well as a highly active catalyst for CO oxidation and water gas shift reaction. The activation energy for CO oxidation with Ce0.65Fe0.33Pd0.02O1.815 is found to be as low as 38 kJ mol(-1). Ce0.67Fe0.33O1.835 and Ce0.65Fe0.33Pd0.02O1.815 have also shown high activity for the water gas shift reaction. CO conversion to CO2 is 100% H-2 specific with these catalysts and conversion rate was found to be as high 27.2 mu moles g(-1) s(-1) and the activation energy was found to be 46.4 kJ mol(-1) for Ce0.65Fe0.33Pd0.02O1.815.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesoporous MnO2 samples with average pore-size in the range of 2-20 nm are synthesized in sonochemical method from KMnO4 by using a tri-block copolymer, namely, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123) as a soft template as well as a reducing agent. The MnO2 samples are found to be poorly crystalline. On increasing the amplitude of sonication, a change in the morphology of MnO2 from nanoparticles to nanorods and also change in porosity are observed. A high BET surface area of 245 m(2) g(-1) is achieved for MnO2 sample. The MnO2 samples are subjected to electrochemical capacitance studies by cyclic voltammetry (CV) and galvanostatic charge-discharge cycling in 0.1 M aqueous Ca(NO3)(2) electrolyte. A maximum specific capacitance (SC) of 265 Fg(-1) is obtained for the MnO2 sample synthesized in sonochemical method using an amplitude of 30 mu m. The MnO2 samples also possess good electrochemical stability due to their favourable porous structure and high surface area. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Doping of TiO2 with a suitable metal ion where dopant redox potential couples with that of titanium (Ti4+) and act as catalyst for additional reduction of Ti4+ to Ti2+ (Ti4+ -> Ti3+ -> Ti2+) is envisaged here to enhance lithium storage even higher than one Li/TiO2. Accordingly, 10 atom% Pt ion substituted TiO2, Ti0.9Pt0.1O2 nanocrystallites was synthesized by sonochemical method using diethylenetriamine (DETA) as complexing agent. Powder X-ray diffraction pattern (XRD), Rietveld refinement and TEM study reveals that Ti0.9Pt0.1O2 nanocrystallites of similar to 4 nm size crystallize in anatase structure. X-ray photo-electron spectroscopy (XPS) study confirms that and both Ti and Pt are in 4+ oxidation state. Due to Pt4+ ion substitution in TiO2, reducibility of TiO2 was enhanced and Ti4+ was reduced up to Ti2+ state via coupling of Pt states (Pt4+/Pt2+/Pt-0) with Ti states (Ti4+/Ti3+/Ti2+). Galvanostatic cycling of Ti0.9Pt0.1O2 against lithium showed very high capacity of 430 mAhg(-1) or exchange of similar to 1.5Li/Ti0.9Pt0.1O2. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.029208jes] All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lithium sodium titanate insertion-type anode has been synthesized by classical solid-state (dry) and an alternate solution-assisted (wet) sonochemical synthesis routes. Successful synthesis of the target compound has been realized using simple Na- and Li-hydroxide salts along with titania. In contrast to the previous reports, these energy-savvy synthesis routes can yield the final product by calcination at 650 -750 degrees C for limited duration of 1-10 h. Owing to the restricted calcination duration (dry route for 1-2 h and wet route for 1-5 h), they yield homogeneous nanoscale lithium sodium titanate particles. Sono-chemical synthesis reduces the lithium sodium titanate particle size down to 80-100 nm vis-a-vis solid-state method delivering larger (200-500 nm) particles. Independent of the synthetic methods, the end products deliver reversible electrochemical performance with reversible capacity exceeding 80 mAh.g(-1) acting as a 1.3 V anode for Li-ion batteries. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructured CaWO4, CaWO4:Eu3+, and CaWO4:Tb3+ phosphor particles were synthesized via a facile sonochemical route. X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, photoluminescence, low voltage cathodoluminescence spectra, and photoluminescence lifetimes were used to characterize the as-obtained samples. The X-ray diffraction results indicate that the samples are well crystallized with the scheelite structure of CaWO4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monodispersed KY3F10:Eu3+ nanospheres with bimodal size distribution have been successfully synthesized via a facile and efficient sonochemical method in a surfactant-free system. Rare-earth nitrate (Y, Eu)(NO3)(3) and potassium fluoborate (KBF4) were used as precursors. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and photoluminescence (PL) spectra were used to characterize the samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uniform lanthanide orthophosphate LnPO(4) (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho) nanoparticles have been systematically synthesized via a facile, fast, efficient ultrasonic irradiation of inorganic salt aqueous solution under ambient conditions without any surfactant or template. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL) spectra as well as kinetic decays were employed to characterize the samples. The SEM and the TEM images show that the hexagonal structured lanthanide orthophosphate LnPO(4) (Ln = La, Ce, Pr, Nd. Sm, Eu, Gd) products have nanorod bundles morphology, while the tetragonal LnPO(4) (Ln = Tb, Dy, Ho) samples prepared under the same experimental conditions are composed of nanoparticles. HRTEM micrographs and SAED results prove that these nanostructures are polycrystalline in nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

YVO4 nanocrystals doped with 10.0 mol% Eu3+ have been synthesized from an aqueous solution of ( Y, Eu)( NO3) (3) and NH4VO3 with or without ultrasonic irradiation. The ultrasonic irradiation has a strong effect on the morphology of the YVO4: Eu particles. The spindle-like particles with an equatorial diameter of 90 - 150 nm and a length of 250 - 300 nm could be obtained with ultrasonic irradiation, whereas only nanoparticles were produced without ultrasonic irradiation. The photoluminescence intensity of YVO4: Eu of the spindle-like particles was largely improved compared with that of the nanoparticles. The possible formation mechanism of the spindle-like particles of YVO4: Eu with the application of ultrasonic irradiation was discussed in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BaF2 nanocrystals doped with 5.0 mol% Eu3+ has been successfully synthesized via a facile, quick and efficient ultrasonic solution route employing the reactions between Ba(NO3)(2), Eu(NO3)(3) and KBF4 under ambient conditions. The product was characterized via X-ray powder diffraction (XRD), scanning electron micrographs (SEM), transmission electron microscopy (TEM), high-resolution transmission electron micrographs (HRTEM), selected area electron diffraction (SAED) and photoluminescence (PL) spectra. The ultrasonic irradiation has a strong effect on the morphology of the BaF2:Eu3+ particles. The caddice-sphere-like particles with an average diameter of 250 nm could be obtained with ultrasonic irradiation, whereas only olive-like particles were produced without ultrasonic irradiation. The results of XRD indicate that the obtained BaF2:Eu3+ nanospheres crystallized well with a cubic structure. The PL spectrum shows that the BaF2:Eu3+ nanospheres has the characteristic emission of Eu3+ D-5(0)-F-7(J) (J = 1-4) transitions, with the magnetic dipole D-5(0)-F-7(1) allowed transition (590 nm) being the most prominent emission line.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A single-crystalline EuF3 nanoflower with a novel three-dimensional (3D) nanostructure has been successfully synthesized via a facile, fast, efficient, and mild ultrasonic irradiation solution route employing the reaction of Eu(NO3)(3) and KBF4 under ambient conditions without any template or surfactant. The ultrasonic irradiation plays an important role and is necessary for the synthesis of EuF3 with the complex structure. The formation mechanism of this complex nanostructure is proposed in this paper. No template or surfactant is used in this method, which avoids the subsequent complicated workup for the removal of the template or surfactant. Furthermore, a substantial reduction in the reaction time as well as the reaction temperature is observed compared with the hydrothermal process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple, efficient and quick method has been established for the synthesis of CePO4:Tb nanorods and CePO4:Tb/LaPO4 core/shell nanorods via ultrasound irradiation of inorganic salt aqueous solution under ambient conditions for 2 h. The as-prepared products were characterized by means of powder x-ray diffraction (PXRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction ( SAED), x-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectra and lifetimes. TEM micrographs show that all of the as-prepared cerium phosphate products have rod-like shape, and have a relatively high degree of crystallinity and uniformity. HRTEM micrographs and SAED results prove that these nanorods are single crystalline in nature. The emission intensity and lifetime of the CePO4:Tb/LaPO4 core/shell nanorods increased significantly with respect to those of CePO4: Tb core nanorods under the same conditions. A substantial reduction in reaction time as well as reaction temperature is observed compared with the hydrothermal process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A facile sonochemical method has been developed to prepare very small zinc sulfide nanoparticles (ZnS NPs) of extremely small size about 1. nm in diameter using a set of ionic liquids based on the bis (trifluoromethylsulfonyl) imide anion and different cations of 1-alkyl-3-methyl-imidazolium. The structural features and optical properties of the NPs were determined in depth with X-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS) analysis, and UV-vis absorption spectroscopy. The energy band gap measurements of ZnS NPs were calculated by UV-vis absorption spectroscopy. One of the interesting features of the present work is that the wide band gap semiconductor ZnS nanocrystals were prepared which are used in the fabrication of photonic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The understanding and control of ferromagnetism in diluted magnetic semiconducting oxides (DMO) is a special challenge in solid-state physics and materials science due to its impact in magneto-optical devices and spintronics. Several studies and mechanisms have been proposed to explain intrinsic ferromagnetism in DMO compounds since the theoretical prediction of room-temperature ferromagnetism. However, genuine and intrinsic ferromagnetism in 3d-transition metal-doped n-type ZnO semiconductors is still a controversial issue. Furthermore, for DMO nanoparticles, some special physical and chemical effects may also play a role. In this contribution, structural and magnetic properties of sonochemically prepared cobalt-doped ZnO nanoparticles were investigated. A set of ZnO samples was prepared varying cobalt molar concentration and time of ultrasonic exposure. The obtained results showed that single phase samples can be obtained by the sonochemical method. However, cobalt nanoclusters can be detected depending on synthesis conditions. Magnetic measurements indicated a possible ferromagnetic response, associated to defects and cobalt substitutions at the zinc site by cobalt. However, ferromagnetism is depleted at higher magnetic fields. Also, an antiferromagnetic response is detected due to cobalt oxide cluster at high cobalt molar concentrations. © 2012 Springer Science+Business Media, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pt–Pd bimetallic nanoparticles supported on graphene oxide (GO) nanosheets were prepared by a sonochemical reduction method in the presence of polyethylene glycol as a stabilizing agent. The synthetic method allowed for a fine tuning of the particle composition without significant changes in their size and degree of aggregation. Detailed characterization of GO-supported Pt–Pd catalysts was carried out by transmission electron microscopy (TEM), AFM, XPS, and electrochemical techniques. Uniform deposition of Pt–Pd nanoparticles with an average diameter of 3 nm was achieved on graphene nanosheets using a novel dual-frequency sonication approach. GO-supported bimetallic catalyst showed significant electrocatalytic activity for methanol oxidation. The influence of different molar compositions of Pt and Pd (1:1, 2:1, and 3:1) on the methanol oxidation efficiency was also evaluated. Among the different Pt/Pd ratios, the 1:1 ratio material showed the lowest onset potential and generated the highest peak current density. The effect of catalyst loading on carbon paper (working electrode) was also studied. Increasing the catalyst loading beyond a certain amount lowered the catalytic activity due to the aggregation of metal particle-loaded GO nanosheets.