941 resultados para SOL-GEL CHEMISTRY
Resumo:
A conductive carbon ceramic composite electrode (CCE) comprised of cc-type 1:12 phosphomolybdic acid (PMo12) and carbon powder in an organically modified silicate matrix was fabricated using a sol-gel method and characterized by scanning electron microscopy, cyclic voltammetry, and Osteryoung square-wave voltammetry. Osteryoung square-wave voltammograms of the modified electrode immersed in different acidic aqueous solutions present the dependence of current and redox potential on pH. The PMo12-doped CCE shows more reversible reaction kinetics, good stability and reproducibility, especially the renewal repeatability by simple polishing in the event of surface fouling or dopant leaching. Moreover, the modified electrode shows good catalytic activity for the electrochemical reduction of bromate.
Resumo:
The present thesis develops from the point of view of titania sol-gel chemistry and an attempt is made to address the modification of the process for better photoactive titania by selective doping and also demonstration of utilization of the process for the preparation of supported membranes and self cleaning films.A general introduction to nanomaterials, nanocrystalline titania and sol-gel chemistry are presented in the first chapter. A brief and updated literature review on sol-gel titania, with special emphasis on catalytic and photocatalytic properties and anatase to rutile transformation are covered. Based on critical assessment of the reported information the present research problem has been defined.The second chapter describes a new aqueous sol-gel method for the preparation of nanocrystalline titania using titanyl sulphate as precursor. This approach is novel since no earlier work has been reported in the same lines proposed here. The sol-gel process has been followed at each step using particle size, zeta potential measurements on the sol and thermal analysis of the resultant gel. The prepared powders were then characterized using X-ray diffraction, FTIR, BET surface area analysis and transmission electron microscopy.The third chapter presents a detailed discussion on the physico-chemical characterization of the aqueous sol-gel derived doped titania. The effect of dopants such as tantalum, gadolinium and ytterbium on the anatase to rutile phase transformation, surface area as well as their influence on photoactivity is also included. The fourth chapter demonstrates application of the aqueous sol-gel method in developing titania coatings on porous alumina substrates for controlling the poresize for use as membrane elements in ultrafiltration. Thin coatings having ~50 nm thickness and transparency of ~90% developed on glass surface were tested successfully for self cleaning applications.
Resumo:
An organic-inorganic hybrid coating was developed to improve the corrosion resistance of the aluminum alloy AA 2024-T3. Organic and inorganic coatings derived from glycidoxypropyltrimethoxysilane (GPTMS) and aluminum tri-sec-butoxide Al((OBu)-Bu-s)(3), with different cerium contents, were deposited onto aluminum by dip-coating process. Corrosion resistance and mechanical properties were investigated by electrochemical impedance measurements and nano-indentation respectively. An optimal cerium concentration of 0.01 M was evidenced. To correlate and explain the hybrid coating performances in relation to the cerium content, NMR experiments were performed. It has been shown that when the cerium concentration in the hybrid is higher than 0.01 M there are important modifications in the hybrid structure that account for the mechanical properties and anti-corrosion behavior of the sol-gel coating. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The demand for materials with high consistency obtained at relatively low temperatures has been leveraging the search for chemical processes substituents of the conventional ceramic method. This paper aims to obtain nanosized pigments encapsulated (core-shell) the basis of TiO2 doped with transition metals (Fe, Co, Ni, Al) through three (3) methods of synthesis: polymeric precursors (Pechini); hydrothermal microwave, and co-precipitation associated with the sol-gel chemistry. The study was motivated by the simplicity, speed and low power consumption characteristic of these methods. Systems costs are affordable because they allow achieving good control of microstructure, combined with high purity, controlled stoichiometric phases and allowing to obtain particles of nanometer size. The physical, chemical, morphological, structural and optical properties of the materials obtained were analyzed using different techniques for materials characterization. The powder pigments were tested in discoloration and degradation using a photoreactor through the solution of Remazol yellow dye gold (NNI), such as filtration, resulting in a separation of solution and the filter pigments available for further UV-Vis measurements . Different calcination temperatures taken after obtaining the post, the different methods were: 400 º C and 1000 º C. Using a fixed concentration of 10% (Fe, Al, Ni, Co) mass relative to the mass of titanium technologically and economically enabling the study. By transmission electron microscopy (TEM) technique was possible to analyze and confirm the structural formation nanosized particles of encapsulated pigment, TiO2 having the diameter of 20 nm to 100 nm, and thickness of coated layer of Fe, Ni and Co between 2 nm and 10 nm. The method of synthesis more efficient has been studied in the work co-precipitation associated with sol-gel chemistry, in which the best results were achieved without the need for the obtainment of powders the calcination process
Resumo:
Bismuth zinc niobium oxide (BZN) was successfully synthesized by a diol-based sol-gel reaction utilizing metal acetate and alkoxide precursors. Thermal analysis of a liquid suspension of precursors suggests that the majority of organic precursors decompose at temperatures up to 150°C, and organic free powders form above 350°C. The experimental results indicate that a homogeneous gel is obtained at about 200°C and then converts to a mixture of intermediate oxides at 350–400°C. Finally, single-phased BZN powders are obtained between 500 and 900°C. The degree of chemical homogeneity as determined by X-ray diffraction and EDS mapping is consistent throughout the samples. Elemental analysis indicates that the atomic ratio of metals closely matches a Bi1.5ZnNb1.5O7 composition. Crystallite sizes of the BZN powders calculated from the Scherrer equation are about 33–98 nm for the samples prepared at 500–700°C, respectively. The particle and crystallite sizes increase with increased sintering temperature. The estimated band gap of the BZN nanopowders from optical analysis is about 2.60–2.75 eV at 500-600°C. The observed phase formations and measured results in this study were compared with those of previous reports.
Resumo:
Lithium silicophosphate glasses have been prepared by a sol-gel route over a wide range of compositions. Their structural and electrical properties have been investigated. Infrared spectroscopic studies show the presence of hydroxyl groups attached to Si and P. MAS NMR investigations provide evidence for the presence of different phosphatic units in the structure. The variations of de conductivities at 423 K and activation energies have been studied as a function of composition, and both exhibit an increasing trend with the ratio of nonbridging oxygen to bridging oxygen in the structure. Ac conductivity behavior shows that the power law exponent, s, is temperature dependent and exhibits a minimum. Relaxation behavior has been examined in detail using an electrical modulus formalism, and modulus data were fitted to Kohlraush-William-Watts stretched exponential function. A structural model has been proposed and the unusual properties exhibited by this unique system of glasses have been rationalized using this model. Ion transport in these glasses appears to be confined to unidimensional conduits defined by modified phosphate chains and interspersed with unmodified silica units.
Resumo:
We report a theoretical formulation for the mean cluster size distribution in a finite polycondensing system. Expressions for the mean number of n-mers with j bonds ( nj) are developed. Numerical calculations show that while the non-cyclic molecules make the dominant contribution to the small clusters, the large clusters are dominated by cyclic structures. The number of particles in ringless chains, n n,n-1, decays monotonically with n at all extents of reaction, but n n becomes bimodal near the gel point. We also find that the solvent plays an important role in the cluster size distribution.
Resumo:
Nanoporous anatase with a thin interconnected filmlike morphology has been synthesized in a single step by coupling a nonhydrolytic condensation reaction of a Ti precursor with a hybrid sol-gel combustion reaction. The method combines the advantages of a conventional sol-gel method for the formation of porous structures with the high crystallinity of the products obtained by combustion methods to yield highly crystalline, phase-pure nanoporous anatase. The generation of pores is initiated by the formation of reverse micelles in a polymeric polycondensation product, which expand during heating, leading to larger pores. A reaction scheme involving a complex formation and nonhydrolytic polycondensation reaction with ester elimination leads to the formation of ail extended Ti-O-Ti network. The effect of process parameters, such as temperature and relative ratio of cosurfactants, on phase formation has been studied. The possibility of band gap engineering by controlled doping during synthesis and the possibility of attachment of molecular/nanoparticle sensitizers provide opportunities for easy preparation of photoanodes for solar cell applications.
Resumo:
Nanocrystalline perovskite barium titanate with an average particle size less than similar to 10 nm is produced using sol-gel route involving ligand-assisted templating. BaTiO3 is obtained by the controlled hydrolysis and condensation reaction of barium acetate (Ba(CH3COO)(2)) with titanium tetra chloride (TiCl4) in the reverse micelles of dodecylamine (DDA) which is used as the template. Our attempts to produce mesoporous BaTiO3 have resulted in the formation of nanocrystalline BaTiO3. The synthesis of nanostructured BaTiO3 is carried out using the ligand-assisted templating approach which proceeds through the sol-gel route. Dodecylamine is used as the template. The sol-gel process in general presents inherent advantages because the nanostructure of the desired materials can be controlled together with their porous structure. Ligand-assisted templating approach involves the formation of covalent bond between the inorganic analogue and the template. Ba(CH3COO)(2) and TiCl4 are used as barium-source and titanium-source respectively. The reaction between Ba(CH3COO)(2) and TiCl4 is found to take place deliberately on the pre-assembled species which acts as the template or occurring with in them which in turn will lead to the generation of the desired nanoscale structure (nanopores or nanoparticles).