940 resultados para SITU GENERATED RU(BPY)(3)(3 )


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It was studied that the nanostructure formed on a gold surface via a simple oxidation-reduction cycles (ORC) in 0.1 M KCl containing Ru(bpy)(3)(2+) with different concentrations. Atomic force microscopy (AFM) and energy-dispersed spectroscopy (EDS) were used to characterize the nanostructure formed on the gold surface. Sweep-step voltammetry and corresponding electroluminescence (ECL) response, in situ electrochemical quartz crystal microbalance (EQCM) measurement were used to monitor the ORC. procedure. It was found that the surface structure became more uniform in the presence of Ru(bpy)(3)(2+), and the surface roughness was decreasing with the increasing of Ru(bpY)(3)(2+) concentration, suggesting a simple and effective method to control the formation of nanostructure on the gold surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Ru(bpy)(3)](2+)-doped silica (RuSi) nanoparticles were synthesized by using a water/oil microemulsion method. Stable electrochemiluminescence (ECL) was obtained when the RuSi nanoparticles were immobilized on a glassy carbon electrode by using tripropylamine (TPA) as a coreactant. Furthermore, the ECL of the RuSi nanoparticles with layer-by-layer biomolecular coatings was investigated. Squential self-assembly of the polyelectrolytes and biomolecules on the RuSi nanoparticles gave nanocomposite suspensions, the ECL of which decreased on increasing the number of bilayers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unique electrochemiluminescence (ECL) behavior of tris(bipyridine) ruthenium(II) (Ru(bpy)(3)(2+) immobilized in a gold/Nafion/Ru(bpy)(3)(2+) composite material was investigated. In this composite, the Ru(bpy)(3)(2+) ECL was found mainly occurred at 0-0.4 V during the cathodic scan process and the ECL peak was at about 0.1 V, which was quite different to the reported Ru(bpy)(3)(2+) ECL. Similar to the generally observed Ru(bpy)(3)(2+) ECL, the present ECL also could be enhanced by tri-n-propylarnine (TPA). It is also unique that in the presence of TPA, another ECL peak at about 0.38 V occurred.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A unique multilabeling at a single-site protocol of the Ru(bpy)(3)(2+) electrochemiluminescence (ECL) system is proposed. Nanoparticles (NPs) were used as assembly substrates to enrich ECL co-reactants of Ru(bpy)(3)(2+) to construct nanoscale-enhanced ECL labels. Two different kinds of NP substrates [including semiconductor NPs (CdTe) and noble metal NPs (gold)] capped with 2-(dimethylamino)ethanethiol (DMAET) [a tertiary amine derivative which is believed to be one of the most efficient of co-reactants of the Ru(bpy)(3)(2+) system] were synthesized through a simple one-pot synthesis method in aqueous media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different effects of divalent metal ions on electrochemiluminescence (ECL) sensor with Ru(bPY)(3)(2+) immobilized in Eastman-AQ membrane were investigated. Mg2+,Ca2+ and Fe2+ can elevate the ECL of Ru(bpY)(3)(2+)/proline; while metal ions that underwent redox reactions on the electrode such as Mn2+ and Co2+ presented intensive quenching effects on Ru(bpy)(3)(2+) ECL. Also, the quenching effect of Mn2+ on the ECL sensor with Ru(bpY)(3)(2+) immobilized in Eastman-AQ membrane enhanced to about 30-folds compared with the case that Ru(bpy)(3)(2+) was dissolved in phosphate buffer, and the enhanced quenching effects of Mn2+ were studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spherical Ru(bpy)(3)(2+)-doped silica (RuSi) nanoparticles were prepared via a water-in-oil microemulsion approach. The electrochemical and electrochemiluminescent properties of the RuSi nanoparticles immobilized on an indium tin oxide (ITO) electrode were investigated. Further, electrochemiluminescence (ECL) of the RuSi nanoparticles with covalently coated biomacromolecules was studied. By covalent cross-linking with glutaraldehyde, gamma-(aminopropyl) triethoxysilane (APTES)-pretreated RuSi nanoparticles were coupled with different concentrations of bovine serum albumin (BSA), hemoglobin, and myoglobin, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to solidify the electrochemiluminescence (ECL) luminophor tris(2,2'-bipyridyl) ruthenium(II) ([Ru(bpy)(3)](2+)) onto the electrode surfaces robustly, the negative charged heteropolyacids (HPAs) moieties were utilized to attract and bond cations [Ru(bpy)(3)](2+) via an adsorption method. The compositions and microstructures of the hybrid complexes were characterized by elemental analysis (EDS), spectroscopic techniques (UV-vis, FTIR) and field-emission scanning electron microscopy (FE-SEM). The electrochemical and ECL behaviors of the [Ru(bpy)(3)](2+)/[PW12O40](3-) hybrid complex contained in the solid film of the nanocomposites formed on the electrode surfaces were also studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among various ECL systems, such as 9,10-diphenylanthracene, lucigenin, tris(2,2'-bipyridyl) ruthenium, peroxyoxalate, luminol, graphene, and nanocrystals, Ru(bpy)(3)(2+) ECL is one of the most widely studied ECL systems in recent years due to its broad applications in immunoassays, DNA probe assays, coreactants analysis, and aptasensors. In this review, the progress in Ru(bpy)(3)(2+) ECL has been summarized on the whole, and the future research trends have been proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tris(2,2'-bipyridine)ruthenium(II) ((Ru(bpy)(3)](2+)) is one of the most extensively studied and used electrochemiluminescent (ECL) compounds owing to its superior properties, which include high sensitivity and stability under moderate conditions in aqueous solution. In this paper we present a simple method for the preparation of [Ru(bpy)(3)](2+)-containing microstructures based on electrostatic assembly The formation of such micro-structures occurs in a single process by direct mixing of aqueous solutions of [Ru(bpy)(3)]Cl-2 and K-3[Fe(CN)(6)] at room temperature. The electrostatic interactions between [Ru(bpy)(3)]Cl-2 cations and [Fe(CN)(6)](3-) anions cause them to assemble into the resulting microstructures. Both the molar ratio and concentration of reactants were found to have strong influences on the formation of these microstructures. Most importantly, the resulting [Ru(bpy)(3)](2+)- containing microstructures exhibit excellent ECL behavior and, therefore, hold great promise for solid-state ECL detection in capillary electrophoresis (CE) or CE microchips.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large-scale process combined sonication with self-assembly techniques for the preparation of high-density gold nanoparticles supported on a [Ru(bpy)(3)](2+)-doped silica/Fe3O4 nanocomposite (GNRSF) is provided. The obtained hybrid nanomaterials containing Fe3O4 spheres have high saturation magnetization, which leads to their effective immobilization on the surface of an ITO electrode through simple manipulation by an external magnetic field (without the need of a special immobilization apparatus). Furthermore, this hybrid nanomaterial film exhibits a good and very stable electrochemiluminescence (ECL) behavior, which gives a linear response for tripropylamine (TPA) concentrations between 5 mu m and 0.21 mM, with a detection limit in the micromolar range. The sensitivity of this ECL sensor can be easily controlled by the amount of [Ru(bpy)(3)](2+) immobilized on the hybrid nanomaterials (that is, varying the amount of [Ru(bpy)(3)](2+) during GNRSF synthesis).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this correspondence, we report on the first preparation of novel, robust Ru(bpy)(3)(2+)-containing supramolecular microstructures via a solution-based self-assembly strategy, carried out by directly mixing H2PtCl6 and Ru(bpy)(3)Cl-2 aqueous solutions at room temperature. It reveals that both the molar ratio and concentration of reactants have a heavy influence on the morphologies of such microstructures. The electrochemical behavior of the Ru(bpy)(3)(2+) components contained in the solid film of the microstructures formed on the electrode surface is also studied and found to exhibit a diffusion-controlled voltammetric feature. Most importantly, such microstructures exhibit excellent electrochemiluminescence (ECL) behaviors and therefore hold great promise as new luminescent materials for solid-state ECL detection in capillary electrophoresis (CE) or CE microchip.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Ru(bpy)(3)(2+)-doped silica nanoparticle-[Ru@Silica] modified indium tin oxide electrode was prepared by simple electrostatic self-assembly technique, and one-electron catalytic oxidation of guanine bases in double-strand and denatured DNA was realized using the electrochemiluminescence detection means.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on electrogenerated chemiluminescence (ECL), a novel method for fabrication of alcohol dehydrogenase (ADH) biosensor by self-assembling ADH to Ru(bpy)(3)(2+) -AuNPs aggregates (Ru-AuNPs) on indium tin oxide (ITO) electrode surface has been developed. Positively charged Ru(bpy)(3)(2+) could be immobilized stably on the electrode surface with negatively charged AuNPs in the form of aggregate via electrostatic interaction. On the other hand, AuNPs are favourable candidates for the immobilization of enzymes because amine groups and cysteine residues in the enzymes are known to bind strongly with AuNPs. Moreover, AuNPs can act as tiny conduction centers to facilitate the transfer of electrons. Such biosensor combined enzymatic selectivity with the sensitivity of ECL detection for quantification of enzyme substrate, and it displayed wide linear range, high sensitivity and good stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemistry and electrogenerated chemiluminescence (ECL) of ruthenium(II) tris(bipyridine) (Ru(bpy)(3)(2+)) ion-exchanged in carbon nanotube (CNT)/Nafion composite films were investigated with tripropylamine (TPA) as a coreactant at a glassy carbon (GC) electrode. The major goal of this work was to investigate and develop new materials and immobilization approaches for the fabrication of ECL-based sensors with improved sensitivity, reactivity, and long-term stability. Ru(bpy)(3)(2+) could be strongly incorporated into Nafion film, but the rate of charge transfer was relative slow and its stability was also problematic. The interfusion of CNT in Nafion resulted in a high peak current of Ru(bpy)(3)(2+) and high ECL intensity. The results indicated that the composite film had more open structures and a larger surface area allowing faster diffusion of Ru(bpy)(3)(2+) and that the CNT could adsorb Ru(bpy)(3)(2+) and also acted as conducting pathways to connect Ru(bpy)(3)(2+) sites to the electrode. In the present work, the sensitivity of the ECL system at the CNT/Nafion film-modified electrodes was more than 2 orders of magnitude higher than that observed at a silica/Nafion composite film-modified electrode and 3 orders of magnitude higher than that at pure Nafion films.