3 resultados para SEMIFLOWS
Resumo:
In this paper, we consider an initial value problem for a class of generalized ODEs, also known as Kurzweil equations, and we prove the existence of a local semidynamical system there. Under certain perturbation conditions, we also show that this class of generalized ODEs admits a discontinuous semiflow which we shall refer to as an impulsive semidynamical system. As a consequence, we obtain LaSalle`s invariance principle for such a class of generalized ODEs. Due to the importance of LaSalle`s invariance principle in studying stability of differential systems, we include an application to autonomous ordinary differential systems with impulse action at variable times. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In this paper we prove that gradient-like semigroups (in the sense of Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) are gradient semigroups (possess a Lyapunov function). This is primarily done to provide conditions under which gradient semigroups, in a general metric space, are stable under perturbation exploiting the known fact (see Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) that gradient-like semigroups are stable under perturbation. The results presented here were motivated by the work carried out in Conley (1978 Isolated Invariant Sets and the Morse Index (CBMS Regional Conference Series in Mathematics vol 38) (RI: American Mathematical Society Providence)) for groups in compact metric spaces (see also Rybakowski (1987 The Homotopy Index and Partial Differential Equations (Universitext) (Berlin: Springer)) for the Morse decomposition of an invariant set for a semigroup on a compact metric space).
Resumo:
The global attractor of a gradient-like semigroup has a Morse decomposition. Associated to this Morse decomposition there is a Lyapunov function (differentiable along solutions)-defined on the whole phase space- which proves relevant information on the structure of the attractor. In this paper we prove the continuity of these Lyapunov functions under perturbation. On the other hand, the attractor of a gradient-like semigroup also has an energy level decomposition which is again a Morse decomposition but with a total order between any two components. We claim that, from a dynamical point of view, this is the optimal decomposition of a global attractor; that is, if we start from the finest Morse decomposition, the energy level decomposition is the coarsest Morse decomposition that still produces a Lyapunov function which gives the same information about the structure of the attractor. We also establish sufficient conditions which ensure the stability of this kind of decomposition under perturbation. In particular, if connections between different isolated invariant sets inside the attractor remain under perturbation, we show the continuity of the energy level Morse decomposition. The class of Morse-Smale systems illustrates our results.