982 resultados para SATURATION PHYSICS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We propose a simple model for the total pp/p (p) over bar cross-section, which is a generalization of the minijet model with the inclusion of a window in the pT-spectrum associated to the saturation physics. Our model implies a natural cutoff for the perturbative calculations which modifies the energy behavior of this component, so that it satisfies the Froissart bound. Including the saturated component, we obtain a satisfactory description of the very high energy experimental data.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work we propose a simple model for the total proton-air cross section, which is an improvement of the minijet model with the inclusion of a window in the p(T)-spectrum associated to the saturation physics. Our approach introduces a natural cutoff for the perturbative calculations which modifies the energy behavior of this component. The saturated component is calculated with a dipole model. The results are compared with experimental cross sections measured in cosmic ray experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heavy quark production has been very well studied over the last years both theoretically and experimentally. Theory has been used to study heavy quark production in ep collisions at HERA, in pp collisions at Tevatron and RHIC, in pA and dA collisions at RHIC, and in AA collisions at CERN-SPS and RHIC. However, to the best of our knowledge, heavy quark production in eA has received almost no attention. With the possible construction of a high energy electron-ion collider, updated estimates of heavy quark production are needed. We address the subject from the perspective of saturation physics and compute the heavy quark production cross section with the dipole model. We isolate shadowing and nonlinear effects, showing their impact on the charm structure function and on the transverse momentum spectrum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We calculate the nuclear cross section for coherent and incoherent vector meson production within the QCD color dipole picture, including saturation effects. Theoretical estimates for scattering on both light and heavy nuclei are given over a wide range of energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At zero temperature and strong applied magnetic fields the ground state of an anisotropic antiferromagnet is a saturated paramagnet with fully aligned spins. We study the quantum phase transition as the field is reduced below an upper critical H(c2) and the system enters a XY-antiferromagnetic phase. Using a bond operator representation we consider a model spin-1 Heisenberg antiferromagnetic with single-ion anisotropy in hypercubic lattices under strong magnetic fields. We show that the transition at H(c2) can be interpreted as a Bose-Einstein condensation (BEC) of magnons. The theoretical results are used to analyze our magnetization versus field data in the organic compound NiCl(2)-4SC(NH(2))(2) (DTN) at very low temperatures. This is the ideal BEC system to study this transition since H(c2) is sufficiently low to be reached with static magnetic fields (as opposed to pulsed fields). The scaling of the magnetization as a function of field and temperature close to H(c2) shows excellent agreement with the theoretical predictions. It allows us to obtain the quantum critical exponents and confirm the BEC nature of the transition at H(c2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The harmonic distortion (HD) exhibited by un-strained and biaxially strained fin-shaped field-effect transistors operating in saturation as single-transistor amplifiers has been investigated for devices with different channel lengths L and fin widths W(fin). The study has been performed through device characterization, 3-D device simulations, and modeling. Nonlinearity has been evaluated in terms of second- and third-order HDs (HD2 and HD3, respectively), and a discussion on its physical sources has been carried out. Also, the influence of the open-loop voltage gain AV in HD has been observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response of a two-level atom in a strong polychromatic field composed of a large number of equidistant frequency components is investigated. We calculate numerically, as well as analytically,:the stationary population inversion and show that the saturation of the atomic transition strongly depends on whether or not there is a central (resonant) frequency component in the driving field. We find that, in the presence of the central component, the atom can remain in the ground state even for a strong Rabi frequency of the driving field. In addition, we find that the inversion is sensitive to the relative phase between the frequency components. When the central component is suppressed, the atomic transition saturates with the Rabi frequency independent of the relative phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whole-body (WB) planar imaging has long been one of the staple methods of dosimetry, and its quantification has been formalized by the MIRD Committee in pamphlet no 16. One of the issues not specifically addressed in the formalism occurs when the count rates reaching the detector are sufficiently high to result in camera count saturation. Camera dead-time effects have been extensively studied, but all of the developed correction methods assume static acquisitions. However, during WB planar (sweep) imaging, a variable amount of imaged activity exists in the detector's field of view as a function of time and therefore the camera saturation is time dependent. A new time-dependent algorithm was developed to correct for dead-time effects during WB planar acquisitions that accounts for relative motion between detector heads and imaged object. Static camera dead-time parameters were acquired by imaging decaying activity in a phantom and obtaining a saturation curve. Using these parameters, an iterative algorithm akin to Newton's method was developed, which takes into account the variable count rate seen by the detector as a function of time. The algorithm was tested on simulated data as well as on a whole-body scan of high activity Samarium-153 in an ellipsoid phantom. A complete set of parameters from unsaturated phantom data necessary for count rate to activity conversion was also obtained, including build-up and attenuation coefficients, in order to convert corrected count rate values to activity. The algorithm proved successful in accounting for motion- and time-dependent saturation effects in both the simulated and measured data and converged to any desired degree of precision. The clearance half-life calculated from the ellipsoid phantom data was calculated to be 45.1 h after dead-time correction and 51.4 h with no correction; the physical decay half-life of Samarium-153 is 46.3 h. Accurate WB planar dosimetry of high activities relies on successfully compensating for camera saturation which takes into account the variable activity in the field of view, i.e. time-dependent dead-time effects. The algorithm presented here accomplishes this task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synchrotron radiation X-ray tomographic microscopy is a nondestructive method providing ultra-high-resolution 3D digital images of rock microstructures. We describe this method and, to demonstrate its wide applicability, we present 3D images of very different rock types: Berea sandstone, Fontainebleau sandstone, dolomite, calcitic dolomite, and three-phase magmatic glasses. For some samples, full and partial saturation scenarios are considered using oil, water, and air. The rock images precisely reveal the 3D rock microstructure, the pore space morphology, and the interfaces between fluids saturating the same pore. We provide the raw image data sets as online supplementary material, along with laboratory data describing the rock properties. By making these data sets available to other research groups, we aim to stimulate work based on digital rock images of high quality and high resolution. We also discuss and suggest possible applications and research directions that can be pursued on the basis of our data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At very high energies we expect that the hadronic cross sections satisfy the Froissart bound, which is a well-established property of the strong interactions. In this energy regime we also expect the formation of the Color Glass Condensate, characterized by gluon saturation and a typical momentum scale: the saturation scale Q(s). In this paper we show that if a saturation window exists between the nonperturbative and perturbative regimes of Quantum Chromodynamics (QCD), the total cross sections satisfy the Froissart bound. Furthermore, we show that our approach allows us to described the high energy experimental data on pp/p (p) over bar total cross sections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We expect to observe parton saturation in a future electron-ion collider. In this Letter we discuss this expectation in more detail considering two different models which are in good agreement with the existing experimental data on nuclear structure functions. In particular, we study the predictions of saturation effects in electron-ion collisions at high energies, using a generalization for nuclear targets of the b-CGC model, which describes the ep HERA quite well. We estimate the total. longitudinal and charm structure functions in the dipole picture and compare them with the predictions obtained using collinear factorization and modern sets of nuclear parton distributions. Our results show that inclusive observables are not very useful in the search for saturation effects. In the small x region they are very difficult to disentangle from the predictions of the collinear approaches. This happens mainly because of the large uncertainties in the determination of the nuclear parton distribution functions. On the other hand, our results indicate that the contribution of diffractive processes to the total cross section is about 20% at large A and small Q(2), allowing for a detailed study of diffractive observables. The study of diffractive processes becomes essential to observe parton Saturation. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nuclear matter calculations with realistic nucleon-nucleon potentials present a general scaling between the nucleon-nucleus binding energy, the corresponding saturation density, and the triton binding energy. The Thomas-Efimov three-body effect implies in correlations among low-energy few-body and many-body observables. It is also well known that, by varying the short-range repulsion, keeping the two-nucleon information (deuteron and scattering) fixed, the four-nucleon and three-nucleon binding energies lie on a very narrow band known as a Tjon line. By looking for a universal scaling function connecting the proper scales of the few-body system with those of the many-body system, we suggest that the general nucleus-nucleon scaling mechanism is a manifestation of a universal few-body effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study proton - anti-proton cross sections in the framework of an updated minijet eikonal model. We propose a different scheme for fixing the parameters, in which we make use of the measured minijet cross section. We compare the results obtained with the GRV98, MRST98, CTEQ6-L and KLN gluon distributions. The latter includes gluon saturation effects. We conclude that in the very high energy regime the use of the KLN distribution improves significantly the behavior of the cross sections. However this improvement is due to the shape of the KLN gluon density and has little to do with saturation effects.