948 resultados para SALMONELLA-ENTERITIS
Resumo:
The source of samonella cross contamination in 15 retail chicken outlets in aresidual area in coimbatore city ,sourthern India was studied. Chopping boards and the butchers hands were predominant followed by knives and the weighing balance tray. Serotyping of the salmonella strains revealed that all strains were salmonella enteritis, except one which was found to be salmonella cerro.The anti bacterial activity of commonly used spices were evaluated.
Resumo:
Objective. Spondyloarthritides (SpA) can present different disease spectra according to ethnic background. The Brazilian Registry of Spondyloarthritis (RBE) is a nationwide registry that comprises a large databank on clinical, functional, and treatment data on Brazilian patients with SpA. The aim of our study was to analyze the influence of ethnic background in SpA disease patterns in a large series of Brazilian patients. Methods. A common protocol of investigation was prospectively applied to 1318 SpA patients in 29 centers distributed through the main geographical regions in Brazil. The group comprised whites (65%), African Brazilians (31.3%), and people of mixed origins (3.7%). Clinical and demographic variables and various disease index scores were compiled. Ankylosing spondylitis (AS) was the most frequent disease in the group (65.1%); others were psoriatic arthritis (18.3%), undifferentiated SpA (6.8%), enteropathic arthritis (3.7%), and reactive arthritis (3.4%). Results. White patients were significantly associated with psoriasis (p = 0.002), positive HLA-B27 (p = 0.014), and use of corticosteroids (p < 0.0001). Hip involvement (p = 0.02), axial inflammatory pain (p = 0.04), and radiographic sacroiliitis (p = 0.025) were associated with African Brazilian descent. Sex distribution, family history, and presence of peripheral arthritis, uveitis, dactylitis, urethritis, and inflammatory bowel disease were similar in the 3 groups, as well as age at disease onset, time from first symptom until diagnosis, and use of anti-tumor necrosis factor-a agents (p > 0.05). Schober test and thoracic expansion were similar in the 3 groups, whereas African Brazilians had higher Maastricht Ankylasing Spondylitis Enthesitis Scores (p = 0.005) and decreased lateral lumbar flexion (p = 0.003), while whites had a higher occiput-to-wall distance (p = 0.02). African Brazilians reported a worse patient global assessment of disease (p = 0.011). Other index scores and prevalence of work incapacity were similar in the 3 groups, although African Brazilians had worse performance in the Ankylosing Spondylitis Quality of Life questionnaire (p < 0.001). Conclusion. Ethnic background is associated with distinct clinical aspects of SpA in Brazilian patients. African Brazilian patients with SpA have a poorer quality of life and report worse disease compared to whites, (First Release Nov 1 2011; J Rheumatol 2012;39:141-7; doi:10.3899/jrheum.110372)
Resumo:
The LysR-type transcriptional regulators (LTTRs) are widely distributed in various genera of prokaryotes LTTRs are DNA binding proteins that can positively or negatively regulate target gene expression and can also repress their own transcription Salmonella enterica comprises a group of Gram-negative bacteria capable of causing clinical syndromes that range from self-limiting diarrhoea to severe fibrinopurulent necrotizing enteritis and life threatening systemic disease. The survival and replication of Salmonella in macrophages and in infected host is brought about by the means of various two component regulatory systems, transporters and other virulence islands In Salmonella genome the existence of 44 LTTRs has been documented These LTTRs regulate bacterial stress response. systemic virulence in mice and also many virulence determinants in vitro. Here we focus on the findings that elucidate the structure and function of the LTTRs in Salmonella and discuss the importance of these LTTRs in making Salmonella a Successful pathogen...
Resumo:
Campylobacter jejuni is a zoonotic bacterial pathogen of worldwide importance. It is estimated that 460,000 human infections occur in the United Kingdom per annum and these involve acute enteritis and may be complicated by severe systemic sequelae. Such infections are frequently associated with the consumption of contaminated poultry meat and strategies to control C. jejuni in poultry are expected to limit pathogen entry into the food chain and the incidence of human disease. Toward this aim, a total of 840 Light Sussex chickens were used to evaluate a Salmonella enterica serovar Typhimurium ΔaroA vaccine expressing the C. jejuni amino acid binding protein CjaA as a plasmid-borne fusion to the C-terminus of fragment C of tetanus toxin. Chickens were given the vaccine at 1-day-old and two weeks later by oral gavage, then challenged after a further two weeks with C. jejuni. Across six biological replicates, statistically significant reductions in caecal C. jejuni of c. 1.4 log10 colony-forming units/g were observed at three and four weeks post-challenge relative to age-matched unvaccinated birds. Protection was associated with the induction of CjaA-specific serum IgY and biliary IgA. Protection was not observed using a vaccine strain containing the empty plasmid. Vaccination with recombinant CjaA subcutaneously at the same intervals significantly reduced the caecal load of C. jejuni at three and four weeks post-challenge. Taken together these data imply that responses directed against CjaA, rather than competitive or cross-protective effects mediated by the carrier, confer protection. The impact of varying parameters on the efficacy of the S. Typhimurium ΔaroA vaccine expressing TetC-CjaA was also tested. Delaying the age at primary vaccination had little impact on protection or humoral responses to CjaA. The use of the parent strain as carrier or changing the attenuating mutation of the carrier to ΔspaS or ΔssaU enhanced the protective effect, consistent with increased invasion and persistence of the vaccine strains relative to the ΔaroA mutant. Expression in the ΔaroA strain of a TetC fusion to Peb1A, but not TetC fusions to GlnH or ChuA, elicited protection against intestinal colonisation by C. jejuni that was comparable to that observed with the TetC-CjaA fusion. Our data are rendered highly relevant by use of the target host in large numbers and support the potential of CjaA- and Peb1A-based vaccines for control of C. jejuni in poultry. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
La régulation de l’homéostasie du fer est cruciale chez les bactéries. Chez Salmonella, l’expression des gènes d’acquisition et du métabolisme du fer au moment approprié est importante pour sa survie et sa virulence. Cette régulation est effectuée par la protéine Fur et les petits ARN non codants RfrA et RfrB. Le rôle de ces régulateurs est d’assurer que le niveau de fer soit assez élevé pour la survie et le métabolisme de Salmonella, et assez faible pour éviter l’effet toxique du fer en présence d’oxygène. Les connaissances concernant le rôle de ces régulateurs ont été principalement obtenues par des études chez S. Typhimurium, un sérovar généraliste causant une gastro-entérite chez les humains. Très peu d’informations sont connues sur le rôle de ces régulateurs chez S. Typhi, un sérovar humain-spécifique responsable de la fièvre typhoïde. Le but de cette étude était de déterminer les rôles de Fur, RfrA et RfrB dans l’homéostasie du fer et la virulence de Salmonella, et de démontrer qu’ils ont une implication distincte chez les sérovars Typhi et Typhimurium. Premièrement, Fur, RfrA et RfrB régulent l’homéostasie du fer de Salmonella. Les résultats de cette étude ont démontré que Fur est requis pour la résistance au stress oxydatif et pour une croissance optimale dans différentes conditions in vitro. La sensibilité du mutant fur est due à l’expression des petits ARN RfrA et RfrB, et cette sensibilité est beaucoup plus importante chez S. Typhi que chez S. Typhimurium. Également, Fur inhibe la transcription des gènes codant pour les sidérophores en conditions riches en fer, tandis que les petits ARN RfrA et RfrB semblent être importants pour la production d’entérobactine et de salmochélines chez S. Typhi lors de conditions pauvres en fer. Ensuite, ces régulateurs affectent la virulence de Salmonella. Fur est important pour la motilité de Salmonella, particulièrement chez S. Typhi. Fur est nécessaire pour l’invasion des deux sérovars dans les cellules épithéliales, et pour l’entrée et la survie de S. Typhi dans les macrophages. Chez S. Typhimurium, Fur ne semble pas impliqué dans l’interaction avec les macrophages. De plus, les petits ARN RfrA et RfrB sont importants pour la multiplication intracellulaire de Salmonella dans les macrophages pour les deux sérovars. Finalement, la protéine Fur et les petits ARN RfrA et RfrB régulent l’expression de l’opéron fimbriaire tcf, absent du génome de S. Typhimurium. Un site de liaison putatif de la protéine Fur a été identifié dans la région promotrice de tcfA chez S. Typhi, mais une régulation directe n’a pas été confirmée. L’expression de tcf est induite par le fer et par Fur, et est inhibée par les petits ARN RfrA et RfrB. Ainsi, ces régulateurs affectent des gènes de virulence qui sont retrouvés spécifiquement chez S. Typhi. En somme, ce projet a permis de démontrer que les régulateurs de l’homéostasie du fer de Salmonella peuvent affecter la résistance de cette bactérie pathogène à différents stress, notamment le stress oxydatif, la croissance en conditions de carence en fer ainsi que la virulence. Ces régulateurs jouent un rôle distinct chez les sérovars Typhi et Typhimurium.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Foram caracterizados os sorotipos, o perfil de sensibilidade microbiana e os achados clínico-epidemiológicos em 53 linhagens do gênero Salmonella isoladas de 41 cães, nove equinos e três bovinos, acometidos por diferentes manifestações clínicas entre 1997 e 2007. Salmonella Typhimurium (45,3%), Salmonella enterica (22,6%), Salmonella Enteritidis (7,5%), Salmonella enterica subsp enterica 4,5,12i (5,7%), Salmonella Newport (5,7%), Salmonella Dublin (3,8%), Salmonella Agona (3,8%), Salmonella Glostrup (3,8%), Salmonella Saintpaul (1,8%) foram os sorotipos encontrados. Ciprofloxacina (100,0%), norfloxacina (100,0%) e gentamicina (100,0%) foram os antimicrobianos mais efetivos, enquanto a maior resistência das linhagens foi observada para ceftiofur (28,5%) e florfenicol (7,0%). As linhagens foram isoladas de animais com enterite, infecção do trato urinário, septicemia, piometra, pneumonia e conjuntivite. Ressalta-se para o predomínio do sorovar Typhimurium nas diferentes manifestações da salmonelose nos animais. Destaca-se, também, a identificação de sorotipos nos animais que também são observados em casos de salmonelose em humanos
Resumo:
Necrotic Enteritis (NE) caused by Clostridium perfringens (CP) in poultry is probably the most important bacterial disease in terms of economic implications. The disease is multi-factorial and is invariably associated with predisposing factors. The present study investigated the effect of a commercially available Lactobacillus-based probiotic (FM-B11) for the control of necrotic enteritis in broiler chickens. In experiment 1, one-day-of-hatch broiler chicks were randomly allocated to the following treatment groups: 1) Non-challenged (NC); 2) Challenged (C); 3) Challenged + probiotic (C+ FM-B11). Prior to placement, chicks in groups 2 and 3 received 0.25 mL of Salmonella typhimurium (ST) containing 105 cfu of viable cells by oral gavage. At 14, 15 and 16 days of age, all chicks in group 3 were treated with FM-B11 in the drinking water at a concentration of 106 cfu/ml. At 21d of age, all chicks in groups 2 and 3, were individually challenged with 5 × 104 sporulated oocysts of E. maxima by oral gavage. At 26d of age, all chicks in groups 2 and 3, were individually challenged with 108 cfu CP; body weight (BW) was recorded prior to challenge. The experiment was terminated at 29 days of age and the following parameters were evaluated: NE-associated mortality, CP lesion scores, CP concentrations in ileum, BW, and body weight gain (BWG). Chicks treated with FM-B11 had significantly (P < 0.05) higher body weight gain after challenge when compared to control challenge chickens. Total mortality was higher in the C group (48.8%) when compared to the C + FM-B11 (12.7%). Even though there was no significant (P > 0.05) difference in lesion score between C and C + FM-B11, group C + FM-B11 had significantly (P < 0.05) lower total number of cfu of CP recovered from the ileal mucosa and content samples when compared to group C. Experiment 2 was a unique and remarkable case report of a field outbreak of NE in a commercial broiler farm in Argentina. A reduction and control of the mortality associated with NE following 3 days of administration of FM-B11 was observed as compared with the control non treated house. These results imply that the commercially available Lactobacillus-based probiotic FM-B11 was able to reduce the severities of NE, as a secondary bacterial infection, in an experimental NE challenge model; as well as, in a commercial field outbreak of NE.
Resumo:
Stressful situations reduce the welfare, production indices and immune status of chickens. Salmonella spp. are a major zoonotic pathogens that annually cause over 1 billion infections worldwide. We therefore designed the current experiment to analyse the effects of 31 +/- 1 degrees C heat stress (HS) (from 35 to 41 days) on performance parameters, Salmonella invasion and small intestine integrity in broiler chickens infected with Salmonella Enteritidis. We observed that HS decreased body weight gain and feed intake. However, feed conversion was only increased when HS was combined with Salmonella Enteritidis infection. In addition, we observed an increase in serum corticosterone levels in all of the birds that were subjected to HS, showing a hypothalamus-pituitary-adrenal axis activation. Furthermore, mild acute multifocal lymphoplasmacytic enteritis, characterized by foci of heterophil infiltration in the duodenum, jejunum and ileum, was observed in the HS group. In contrast, similar but more evident enteritis was noted in the heat-stressed and Salmonella-infected group. In this group, moderate enteritis was observed in all parts of the small intestine. Lastly, we observed an increase in Salmonella counts in the spleens of the stressed and Salmonella-infected chickens. The combination of HS and Salmonella Enteritidis infection may therefore disrupt the intestinal barrier, which would allow pathogenic bacteria to migrate through the intestinal mucosa to the spleen and generate an inflammatory infiltrate in the gut, decreasing performance parameters.
Resumo:
Pathogens require protein-folding enzymes to produce functional virulence determinants. These foldases include the Dsb family of proteins, which catalyze oxidative folding in bacteria. Bacterial disulfide catalytic processes have been well characterized in Escherichia coli K-12 and these mechanisms have been extrapolated to other organisms. However, recent research indicates that the K-12 complement of Dsb proteins is not common to all bacteria. Importantly, many pathogenic bacteria have an extended arsenal of Dsb catalysts that is linked to their virulence. To help to elucidate the process of oxidative folding in pathogens containing a wide repertoire of Dsb proteins, Salmonella enterica serovar Typhimurium has been focused on. This Gram-negative bacterium contains three DsbA proteins: SeDsbA, SeDsbL and SeSrgA. Here, the expression, purification, crystallization and preliminary diffraction analysis of these three proteins are reported. SeDsbA, SeDsbL and SeSrgA crystals diffracted to resolution limits of 1.55, 1.57 and 2.6 Å and belonged to space groups P21, P21212 and C2, respectively.
Resumo:
In prototypic Escherichia coli K-12 the introduction of disulfide bonds into folding proteins is mediated by the Dsb family of enzymes, primarily through the actions of the highly oxidizing protein EcDsbA. Homologues of the Dsb catalysts are found in most bacteria. Interestingly, pathogens have developed distinct Dsb machineries that play a pivotal role in the biogenesis of virulence factors, hence contributing to their pathogenicity. Salmonella enterica serovar (sv.) Typhimurium encodes an extended number of sulfhydryl oxidases, namely SeDsbA, SeDsbL, and SeSrgA. Here we report a comprehensive analysis of the sv. Typhimurium thiol oxidative system through the structural and functional characterization of the three Salmonella DsbA paralogues. The three proteins share low sequence identity, which results in several unique three-dimensional characteristics, principally in areas involved in substrate binding and disulfide catalysis. Furthermore, the Salmonella DsbA-like proteins also have different redox properties. Whereas functional characterization revealed some degree of redundancy, the properties of SeDsbA, SeDsbL, and SeSrgA and their expression pattern in sv. Typhimurium indicate a diverse role for these enzymes in virulence.
Resumo:
The Escherichia coli mu operon was subcloned into a pKK233-2 vector containing rat glutathione S-transferase (GST) 5-5 cDNA and the plasmid thus obtained was introduced into Salmonella typhimurium TA1535. The newly developed strain S.typhimurium NM5004, was found to have 52-fold greater GST activity than the original umu strain S.typhimurium TA1535/pSK1002. We compared sensitivities of these two tester strains, NM5004 and TA1535/ pSK1002, for induction of umuC gene expression with several dihaloalkanes which are activated or inactivated by GST 5-5 activity. The induction of umuC gene expression by these chemicals was monitored by measuring the cellular P-galactosidase activity produced by umuC'lacZ fusion gene in these two tester strains. Ethylene dibromide, 1-bromo-2-chloroethane, 1,2-dichloroethane, and methylene dichloride induced umuC gene expression more strongly in the NM5004 strain than the original strain, 4-Nitroquinoline 1-oxide and N-methyl-N'-nitro-N-nitrosoguanidine were found to induce umuC gene expression to similar extents in both strains. In the case of 1-nitropyrene and 2-nitrofluorene, however, NM5004 strain showed weaker umuC gene expression responses than the original TA1535/ pSK1002 strain, 1,2-Epoxy-3-(4'-nitrophenoxy)propane, a known substrate for GST 5-5, was found to inhibit umuC induction caused by 1-bromo-2-chloroethane. These results indicate that this new tester NM5004 strain expressing a mammalian GST theta class enzyme may be useful for studies of environmental chemicals proposed to be activated or inactivated by GST activity.
Resumo:
The rat theta class glutathione S-transferase (GST) 5-5 has been shown to affect the mutagenicity of halogenated alkanes and epoxides. In Salmonella typhimurium TA1535 expressing the rat GST5-5 the number of revertants was increased compared to the control strain by CH2Br2, ethylene dibromide (EDB) and 1,2,3,4-diepoxybutane (BDE); in contrast, mutagenicity of 1,2-epoxy-3-(4'-nitrophenoxy)propane (EPNP) was reduced. S.typhimurium TA1535 cells were transformed with an expression plasmid carrying the cDNA of the human theta ortholog GST1-1 either in sense or antisense orientation, the latter being the control. These transformed bacteria were utilized for mutagenicity assays. Mutagenicity of EDB, BDE, CH2Br2, epibromohydrin and 1,3-dichloroacetone was higher in the S.typhimurium TA1535 expressing GSTT1-1 than in the control strain. The expression of active enzyme did not affect the mutagenicity of 1,2-epoxy-3-butene or propylene oxide, GSTT1-1 expression reduced the mutagenicity of EPNP. Glutathione S-transferase 5-5 and GSTT1-1 modulate genotoxicity of several industrially important chemicals in the same way. Polymorphism of the GSTT1 locus in humans may therefore cause differences in cancer susceptibility between the two phenotypes.
Resumo:
Dihalomethanes can produce liver tumors in mice but not in rats, and concern exists about the risk of these compounds to humans. Glutathione (GSH) conjugation of dihalomethanes has been considered to be a critical event in the bioactivation process, and risk assessment is based upon this premise; however, there is little experimental support for this view or information about the basis of genotoxicity. A plasmid vector containing rat GSH S-transferase 5-5 was transfected into the Salmonella typhimurium tester strain TA1535, which then produced active enzyme. The transfected bacteria produced base-pair revertants in the presence of ethylene dihalides or dihalomethanes, in the order CH2Br2 > CH2BrCl > CH2Cl2. However, revertants were not seen when cells were exposed to GSH, CH2Br2, and an amount of purified GSH S-transferase 5-5 (20-fold excess in amount of that expressed within the cells). HCHO, which is an end product of the reaction of GSH with dihalomethanes, also did not produce mutations. S-(1-Acetoxymethyl)GSH was prepared as an analog of the putative S-(1-halomethyl)GSH reactive intermediates. This analog did not produce revertants, consistent with the view that activation of dihalomethanes must occur within the bacteria to cause genetic damage, presenting a model to be considered in studies with mammalian cells. S-(1-Acetoxymethyl)GSH reacted with 2′-deoxyguanosine to yield a major adduct, identified as S-[1-(N2-deoxyguanosinyl)methyl]GSH. Demonstration of the activation of dihalomethanes by this mammalian GSH S-transferase theta class enzyme should be of use in evaluating the risk of these chemicals, particularly in light of reports of the polymorphic expression of a similar activity in humans.