979 resultados para SALMONELLA ASSAY
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The designation of biodiesel as an environmental-friendly alternative to diesel oil has improved its commercialization and use. However, most biodiesel environmental safety studies refer to air pollution and so far there have been very few literature data about its impacts upon other biotic systems, e.g. water, and exposed organisms. Spill simulations in water were carried out with neat diesel and biodiesel and their blends aiming at assessing their genotoxic potentials should there be contaminations of water systems. The water soluble fractions (WSF) from the spill simulations were submitted to solid phase extraction with C-18 cartridge and the extracts obtained were evaluated carrying out genotoxic and mutagenic bioassays [the Salmonella assay and the in vitro MicroFlow (R) kit (Litron) assay]. Mutagenic and genotoxic effects were observed, respectively, in the Salmonella/microsome preincubation assay and the in vitro MN test carried out with the biodiesel WSF. This interesting result may be related to the presence of pollutants in biodiesel derived from the raw material source used in its production chain. The data showed that care while using biodiesel should be taken to avoid harmful effects on living organisms in cases of water pollution. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Azo dyes are of environmental concern due to their degradation products, widespread use, and low-removal rate during conventional treatment. Their toxic properties are related to the nature and position of the substituents with respect to the aromatic rings and amino nitrogen atom. The dyes Disperse Red 1 and Disperse Red 13 were tested for Salmonella mutagenicity, cell viability by annexin V, and propidium iodide in HepG2 and by aquatic toxicity assays using daphnids. Both dyes tested positive in the Salmonella assay, and the suggestion was made that these compounds induce mainly frame-shift mutations and that the enzymes nitroreductase and O-acetyltransferase play an important role in the observed effect. In addition, it was shown that the presence of the chlorine substituent in Disperse Red 13 decreased the mutagenicity about 14 times when compared with Disperse Red 1, which shows the same structure as Disperse Red 13, but without the chlorine substituent. The presence of this substituent did not cause cytotoxicity in HepG2 cells, but toxicity to the water flea Daphnia similis increased in the presence of the chlorine substituent. These data suggest that the insertion of a chlorine substituent could be an alternative in the design of dyes with low-mutagenic potency, although the ecotoxicity should be carefully evaluated. (C) 2010 Wiley Periodicals, Inc. Environ Toxicol 26: 489-497, 2011.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Degradation of Disperse Orange 1, Disperse Red 1 and Disperse Red 13 dyes has been performed using electrochemical oxidation on Pt electrode, chemical chlorination and photoelectrochemical oxidation on Ti/TiO(2) thin film electrodes in NaCl or Na(2)SO(4) medium. 100% discoloration was obtained for all tested methods after 1 h of treatment. Faster color removal was obtained by photoelectrocatalytic oxidation in 0.1 mol L(-1) NaCl pH 4.0 under UV light and an applied potential of +1.0V (vs SCE reference electrode), which indicates also values around 60% of TOC removal. The conventional chlorination method and electrochemical oxidation on Pt electrode resulted in negligible reduction of TOC removal. All dyes showed positive mutagenic activity in the Salmonella/microsome assay with the strain TA98 in the absence and presence of S9 (exogenous metabolic activation). Nevertheless, there is complete reduction of the mutagenic activity after 1 h of photoelectrocatalytic oxidation, suggesting that this process would be good option to remove disperse azo dyes from aqueous media. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The treatment of textile effluents by the conventional method based on activated sludge followed by a chlorination step is not usually an effective method to remove azo dyes, and can generate products more mutagenic than the untreated dyes. The present work evaluated the efficiency of conventional chlorination to remove the genotoxicity/mutagenicity of the azo dyes Disperse Red 1, Disperse Orange 1, and Disperse Red 13 from aqueous solutions. The comet and micronucleus assays with HepG2 cells and the Salmonella mutagenicity assay were used. The degradation of the dye molecules after the same treatment was also evaluated, using ultraviolet and visible absorption spectrum measurements (UV-vis), high performance liquid chromatography coupled to a diode-array detector (HPLC-DAD), and total organic carbon removal (TOC) analysis. The comet assay showed that the three dyes studied induced damage in the DNA of the HepG2 cells in a dose-dependent manner. After chlorination, these dyes remained genotoxic, although with a lower damage index (DI). The micronucleus test showed that the mutagenic activity of the dyes investigated was completely removed by chlorination, under the conditions tested. The Salmonella assay showed that chlorination reduced the mutagenicity of all three dyes in strain YG1041, but increased the mutagenicity of Disperse Red 1 and Disperse Orange 1 in strain TA98. With respect to chemical analysis, all the solutions showed rapid discoloration and a reduction in the absorbance bands characteristic of the chromophore group of each dye. However, the TOC was not completely removed, showing that chlorination of these dyes is not efficient in mineralizing them. It was concluded that conventional chlorination should be used with caution for the treatment of aqueous samples contaminated with azo dyes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Urban particulate matter (UPM) contributes to lung cancer incidence. Here, we have studied the mutagenic activity and DNA adduct-forming ability of fractionated UPM extractable organic matter (EOM). UPM was collected with a high-volume sampler in June 2004 at two sites, one at street level adjacent to a roadway and the other inside a park within the urban area of the city of Sao Paulo, Brazil. UPM was extracted using dichloromethane, and the resulting EOM was separated by HPLC to obtain PAH, nitro-PAH, and oxy-PAH fractions which were tested for mutagenicity with the Salmonella strains TA98 and YG1041 with and without S9 metabolic activation. The PAH fraction from both sites showed negligible mutagenic activity in both strains. The highest mutagenic activity was found for the nitro-PAH fraction using YG1041 without metabolic activation; however, results were comparable for both sites. The nitro-PAH and oxy-PAH fractions were incubated with calf thymus DNA under reductive conditions appropriate for the activation of nitro aromatic compounds, then DNA adduct patterns and levels were determined with thin-layer chromatography (TLC) (32)p-postlabeling method using two enrichment procedures-nuclease PI digestion and butanol extraction. Reductively activated fractions from both sites produced diagonal radioactive zones (DRZ) of putative aromatic DNA adducts on thin layer plates with both enrichment procedures. No such DRZ were observed in control experiments using fractions from unexposed filters or from incubations without activating system. Total adduct levels produced by the nitro-PAH fractions were similar for both sites ranging from 30 to 45 adducts per 10(8) normal nucleotides. In contrast, the DNA binding of reductively activated oxy-PAH fractions was three times higher and the adduct pattern consisted of multiple discrete spots along the diagonal line on the thin layer plates. However, DNA adduct levels were not significantly different between the sampling sites. Both samples presented the same levels of mutagenic activity. The response in the Salmonella assay was typical of nitroaromatics. Although, more mutagenic activity was related to the nitro-PAH fraction in the Salmonella assay, the oxy-PAH fractions showed the highest DNA adduct levels. More studies are needed to elucidate the nature of the genotoxicants occurring in Sao Paulo atmospheric samples. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Recently a textile azo dye processing plant effluent was identified as one of the sources of mutagenic activity detected in the Cristais River, a drinking water source in Brazil [G.A. Umbuzeiro, D.A. Roubicek, C.M. Rech, M.I.Z. Sato, L.D. Claxton, Investigating the sources of the mutagenic activity found in a river using the Salmonella assay and different water extraction procedures, Chemosphere 54 (2004) 1589-1597]. Besides presenting high mutagenic activity in the Salmonella/microsome assay, the mutagenic nitro-aminoazobenzenes dyes CI Disperse Blue 373, Cl Disperse Violet 93, and CI Disperse Orange 37 [G.A. Umbuzeiro, H.S. Freeman, S.H. Warren, D.P Oliveira, Y. Terao, T. Watanabe, L.D. Claxton, the contribution of azo dyes in the mutagenic activity of the Cristais river, Chemosphere 60 (2005) 55-64] as well as benzidine, a known carcinogenic compound [T.M. Mazzo, A.A. Saczk, G.A. Umbuzeiro, M.V.B. Zanoni, Analysis of aromatic amines in surface waters receiving wastewater from textile industry by liquid chromatographic with eletrochemical detection, Anal. Lett., in press] were found in this effluent. After similar to 6 km from the discharge of this effluent, a drinking water treatment plant treats and distributes the water to a population of approximate 60,000. As shown previously, the mutagens in the DWTP intake water are not completely removed by the treatment. The water used for human consumption presented mutagenic activity related to nitro-aromatics and aromatic amines compounds probably derived from the cited textile processing plant effluent discharge [G.A. Umbuzeiro, D.A. Roubicek, C.M. Rech, M.I.Z.. Sato, L.D. Claxton, Investigating the sources of the mutagenic activity found in a river using the Salmonella assay and different water extraction procedures, Chemosphere 54 (2004) 1589-1597; G.A. Umbuzeiro, H.S. Freeman, S.H. Warren, D.P. Oliveira, Y. Terao, T. Watanabe, L.D. Claxton, the contribution of azo dyes in the multagenic activity of the Cristais river, Chemosphere 60 (2005) 55-64]. Therefore, it is important to evaluate the possible risks involved in the human consumption of this contaminated water. With that objective, one sample of the cited industrial effluent was tested for carcinogenicity in the aberrant crypt foci medium-term assay in colon of Wistar rats. The rats received the effluent in natura through drinking water at concentrations of 0.1%, 1%, and 10%. The effluent mutagenicity was also confirmed in the Salmonella/microsome assay with the strains TA98 and YG1041. There was an increased number of preneoplastic lesions in the colon of rats exposed to concentrations of 1% and 10% of the effluent, and a positive response for both Salmonella strains tested. These results indicate that the discharge of the effluent should be avoided in waters used for human consumption and show the sensitivity of the ACF crypt foci assay as an important tool to evaluate the carcinogenic potential of environmental complex mixtures. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Chrysin is one of the natural flavonoids present in plants, and large amounts are present in honey and propolis. In addition to anticancer, antioxidation, and anti-inflammatory activities, chrysin has also been reported to be an inhibitor of aromatase, an enzyme converting testosterone into estrogen. The present study evaluated the mutagenicity of this flavonoid using micronucleus (MN) with HepG2 cells and Salmonella. Cell survival after exposure to different concentrations of chrysin was also determined using sulforhodamine B (SRB) colorimetric assay in HepG2 cells and the influence of this flavonoid on growth of cells in relation to the cell cycle and apoptosis. TheMN test showed that from 1 to 15 mu M of this flavonoid mutagenic activity was noted in HepG2 cells. The Salmonella assay demonstrated a positive response to the TA100 Salmonella strain in the presence or absence of S9, suggesting that this compound acted on DNA, inducing base pair substitution before or after metabolism via cytochrome P-450. The SRB assay illustrated that chrysin promoted growth inhibition of HepG2 cells in both periods studied (24 and 48 h). After 24 h of exposure it was noted that the most significant results were obtained with a concentration of 50 mu M, resulting in 83% inhibition and SubG0 percentage of 12%. After 48 h of incubation cell proliferation inhibition rates (97% at 50 mu M) were significantly higher. Our results showed that chrysin is a mutagenic and cytotoxic compound in cultured human HepG2 cells and Salmonella typhimurium. Although it is widely accepted that flavonoids are substances beneficial to health, one must evaluate the risk versus benefit relationship and concentrations of these substances to which an individual may be exposed.
Resumo:
Two respirable coal fly ash samples ((LESSTHEQ) 3(mu)m), one from a pressurized fluidized-bed combustion miniplant and one from a conventional combustion power plant, were investigated for physical properties, chemical composition and biological activity. Electron microscopy illustrated irregularity in fluidized-bed combustion fly ash and sphericity in conventional combustion fly ash. Elemental analysis of these samples showed differences in trace elements. Both fly ash samples were toxic in rabbit alveolar macrophage and Chinese hamster ovary cell systems in vitro. The macrophages were more sensitive to toxicity of fly ash than the ovary cells. For measuring the cytotoxicity of fly ash, the most sensitive parameters were adenosine triphosphate in the alveolar macrophage system and viability index in the hamster ovary system. Intact fluidized-bed combustion fly-ash particles showed mutagenicity only in strains TA98 and TA1538 without metabolic activation in the Ames Salmonella assay. No mutagenicity was detected in bioassay of conventional combustion fly ash particles. Solvent extraction yielded more mass from fluidized-bed combustion fly ash than from conventional combustion fly ash. The extracts of fluidized-bed combustion fly ash showed higher mutagenic activity than conventional combustion fly ash. These samples contained direct-acting, frameshift mutagens.^ Fly ash samples collected from the same fluidized-bed source by cyclones, a fabric filter, and a electrostatic precipitator at various temperatures were compared for particle size, toxicity, and mutagenicity. Results demonstrated that the biological activity of coal fly ash were affected by the collection site, device, and temperature.^ Coal fly ash vapor-coated with 1-nitropyrene was developed as a model system to study the bioavailability and recovery of nitroaromatic compounds in fly ash. The effects of vapor deposition on toxicity and mutagenicity of fly ash were examined. The nitropyrene coating did not significantly alter the ash's cytotoxicity. Nitropyrene was bioavailable in the biological media, and a significant percentage was not recovered after the coated fly ash was cultured with alveolar macrophages. 1-Nitropyrene loss increased as the number of macrophages was increased, suggesting that the macrophages are capable of metabolizing or binding 1-nitropyrene present in coal fly ash. ^
Resumo:
Phytochemical studies carried out with Piperaceae species have shown great diversity of secondary metabolites among which are several displayed considerable biological activities. The species Piper tuberculatum has been intensively investigated and a series of amides have been described. For instance, (E)-piplartine showed significant cytotoxic activity against tumor cell lines, especially human leukemia cell lines; antifungal activity against Cladosporium species; trypanocidal activity and others. Considering the popular use of P. tuberculatum and the lack of pharmacological studies regarding this plant species, the mutagenic and antimutagenic effect of (E)-piplartine was evaluated by the Ames test, using the strains TA97a, TA98, TA100 and TA102 of Salmonella typhimurium. No mutagenic activity was observed for this compound.
Resumo:
The objective of this study was to verify the possible inclusion of the Salmonella/microsome mutagenicity assay in a groundwater monitoring program as a complementary assay to assess water quality. Groundwater samples belonging to seven wells from different types of aquifers were analyzed. Three different methods for sample preparation were used: membrane filtration; liquid-liquid and XAD-4 extraction. The filtered samples were tested using TA98, TA100, YG1041 and YG1042 and the water extracts only with TA98 and TA100. No mutagenic activity was observed in any of the 16 filtered samples tested. Out of the 10 samples analyzed using XAD-4 extraction, five showed mutagenic activity with potency ranging from 130 to 1500 revertants/L. Concerning the liquid-liquid extraction, from the 11 samples analyzed, 3 showed mutagenicity. The XAD-4 extraction was the most suitable sample preparation. TA98 without S9 was found to be the most sensitive testing condition. The wells presenting water samples with mutagenic activity belonged to unconfined aquifers, which are more vulnerable to contamination. The data suggest that Salmonella/microsome assay can be used as an efficient screening tool to monitor groundwater for mutagenic activity. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study was to compare the responses of the Salmonella/microsome microsuspension assay with the new microplate fluctuation protocol (MPF) for the evaluation of the mutagenic activity of environmental samples. Organic extracts of total particulate atmospheric air samples, surface waters, and effluents were tested in dose-response experiments. The assays were performed with strain TA98 in the absence and presence of S9 mix. Both protocols produced similar results, despite the fact that the maximum score of the MPF is limited to 48 wells, whereas in the regular plate assay it is possible to count up to 1,500 colonies using an automatic counter. Similar sensitivities based on the lowest dose that resulted in a positive response were obtained for both assays. The MPF procedure is less laborious (e.g., all-liquid format, use of multi-channel pipettors) and allows for automation of the pipetting and dispensing steps, thus, reducing time of the analysis which is particularly important in environmental quality monitoring programs or in effect-directed analysis. The results show that the MPF procedure is a promising tool to test environmental samples for mutagenic activity. Environ. Mol. Mutagen. 51:31-38, 2010. (C) 2009 Wiley-Liss, Inc.
Resumo:
The mutagenic activities of 16 anti-parasite drugs were screened by the Simultest in both qualitative (spot test) and quantitative (plate incorporation) assays with a Salmonella typhimurium pool composed by the indicator strains TA97, TA 98, TA100 and TA102. Four anti Chagas' disease drugs (nifurtimox, benznidazole, CL 64,855, and MK 436) and two anti-amebae drugs (metronidazole and tinidazole) gave positive results in qualitative tests and incorporation of rat liver microsomes did not alter the results. Comparative dose response curves of the mutagenic activities of CL 64,855, metronidazole and benznidazole obtained by the simultest and by individual Salmonella indicator strains demonstrated that both approachs have similar sensitivities. The results corroborate the validity of the Simultest, as a simplified, fast and economic version of the Ames test in preliminary screening of potential mutagenic drugs.