243 resultados para S-rnase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-incompatibility RNases (S-RNases) are an allelic series of style glycoproteins associated with rejection of self-pollen in solanaceous plants. The nucleotide sequences of S-RNase alleles from several genera have been determined, but the structure of the gene products has only been described for those from Nicotiana alata. We report on the N-glycan structures and the disulfide bonding of the S-3-RNase from wild tomato (Lycopersicon peruvianum) and use this and other information to construct a model of this molecule. The S-3-RNase has a single N-glycosylation site (Asn-28) to which one of three N-glycans is attached. S-3-RNase has seven Cys residues; six are involved in disulfide linkages (Cys-16-Cys-21, Cys-46-Cys-91, and Cys-166-Cys-177), and one has a free thiol group (Cys-150). The disulfide-bonding pattern is consistent with that observed in RNase Rh, a related RNase for which radiographic-crystallographic information is available. A molecular model of the S-3-RNase shows that four of the most variable regions of the S-RNases are clustered on one surface of the molecule. This is discussed in the context of recent experiments that set out to determine the regions of the S-RNase important for recognition during the self-incompatibility response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain a Doctoral Degree in Biology by Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para a obtenção de grau de doutor em Biologia pelo Instituto de Tecnologia Química e Biológica. Universidade Nova de Lisboa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Bacterial populations are highly successful at colonizing new habitats and adapting to changing environmental conditions, partly due to their capacity to evolve novel virulence and metabolic pathways in response to stress conditions and to shuffle them by horizontal gene transfer (HGT). A common theme in the evolution of new functions consists of gene duplication followed by functional divergence. UlaG, a unique manganese-dependent metallo-b-lactamase (MBL) enzyme involved in L-ascorbate metabolism by commensal and symbiotic enterobacteria, provides a model for the study of the emergence of new catalytic activities from the modification of an ancient fold. Furthermore, UlaG is the founding member of the so-called UlaG-like (UlaGL) protein family, a recently established and poorly characterized family comprising divalent (and perhaps trivalent)metal-binding MBLs that catalyze transformations on phosphorylated sugars and nucleotides. Results: Here we combined protein structure-guided and sequence-only molecular phylogenetic analyses to dissect the molecular evolution of UlaG and to study its phylogenomic distribution, its relatedness with present-day UlaGL protein sequences and functional conservation. Phylogenetic analyses indicate that UlaGL sequences are present in Bacteria and Archaea, with bona fide orthologs found mainly in mammalian and plant-associated Gramnegative and Gram-positive bacteria. The incongruence between the UlaGL tree and known species trees indicates exchange by HGT and suggests that the UlaGL-encoding genes provided a growth advantage under changing conditions. Our search for more distantly related protein sequences aided by structural homology has uncovered that UlaGL sequences have a common evolutionary origin with present-day RNA processing and metabolizing MBL enzymes widespread in Bacteria, Archaea, and Eukarya. This observation suggests an ancient origin for the UlaGL family within the broader trunk of the MBL superfamily by duplication, neofunctionalization and fixation. Conclusions: Our results suggest that the forerunner of UlaG was present as an RNA metabolizing enzyme in the last common ancestor, and that the modern descendants of that ancestral gene have a wide phylogenetic distribution and functional roles. We propose that the UlaGL family evolved new metabolic roles among bacterial and possibly archeal phyla in the setting of a close association with metazoans, such as in the mammalian gastrointestinal tract or in animal and plant pathogens, as well as in environmental settings. Accordingly, the major evolutionary forces shaping the UlaGL family include vertical inheritance and lineage-specific duplication and acquisition of novel metabolic functions, followed by HGT and numerous lineage-specific gene loss events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé La ribonucléase P (RNase P) est une ribonucléoprotéine omniprésente dans tous les règnes du vivant, elle est responsable de la maturation en 5’ des précurseurs des ARNs de transfert (ARNts) et quelques autres petits ARNs. L’enzyme est composée d'une sous unité catalytique d'ARN (ARN-P) et d'une ou de plusieurs protéines selon les espèces. Chez les eucaryotes, l’activité de la RNase P cytoplasmique est distincte de celles des organelles (mitochondrie et chloroplaste). Chez la plupart des espèces, les ARN-P sont constituées de plusieurs éléments structuraux secondaires critiques conservés au cours de l’évolution. En revanche, au niveau de la structure, une réduction forte été observé dans la plupart des mtARN-Ps. Le nombre de protéines composant la RNase P est extrêmement variable : une chez les bactéries, environ quatre chez les archéobactéries, et dix chez la forme cytoplasmique des eucaryotes. Cet aspect est peu connu pour les formes mitochondriales. Dans la plupart des cas, l’identification de la mtRNase P est le résultat de longues procédures de purification comprenant plusieurs étapes dans le but de réduire au minimum le nombre de protéines requises pour l’activité (exemple de la levure et A. nidulans). Cela mène régulièrement à la perte de l’activité et de l’intégrité des complexes ribonucléo-protéiques natifs. Dans ce travail, par l’utilisation de la technique de BN-PAGE, nous avons développé une procédure d’enrichissement de l’activité RNase P mitochondriale native, donnant un rendement raisonnable. Les fractions enrichies capables de cette activité enzymatique ont été analysées par LC/MS/MS et les résultats montrent que l’holoenzyme de la RNase P de chacune des fractions contient un nombre de protéines beaucoup plus grand que ce qui était connue. Nous suggérons une liste de protéines (principalement hypothétiques) qui accompagnent l’activité de la RNase P. IV De plus, la question de la localisation de la mtRNase P de A. nidulans a été étudiée, selon nos résultats, la majorité de la mtRNase P est attachée á la membrane interne de la mitochondrie. Sa solubilisation se fait par l’utilisation de différents types de détergent. Ces derniers permettent l’obtention d’un spectre de complexes de la RNase P de différentes tailles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les R-loops générés durant la transcription sont impliqués dans de nombreuse fonctions incluant la réplication, la recombinaison et l’expression génique tant chez les procaryotes que chez les eucaryotes. Plusieurs études ont montré qu’un excès de supertours négatifs et des séquences riches en bases G induisent la formation de R-loops. Jusqu’à maintenant, nos résultats nous ont permis d’établir un lien direct entre les topoisomérases, le niveau de surenroulement et la formation de R-loops. Cependant, le rôle physiologique des R-loops est encore largement inconnu. Dans le premier article, une étude détaillée du double mutant topA rnhA a montré qu’une déplétion de RNase HI induit une réponse cellulaire qui empêche la gyrase d’introduire des supertours. Il s’agit ici, de la plus forte évidence supportant les rôles majeurs de la RNase HI dans la régulation du surenroulement de l’ADN. Nos résultats ont également montré que les R-loops pouvaient inhiber l’expression génique. Cependant, les mécanismes exacts sont encore mal connus. L’accumulation d’ARNs courts au détriment d’ARNs pleine longueur peut être causée soit par des blocages durant l’élongation de la transcription soit par la dégradation des ARNs pleine longueur. Dans le deuxième article, nous montrons que l’hypersurenroulement négatif peut mener à la formation de R-loops non-spécifiques (indépendants de la séquence nucléotidique). La présence de ces derniers, engendre une dégradation massive des ARNs et ultimement à la formation de protéines tronquées. En conclusion, ces études montrent l’évidence d’un lien étroit entre la RNase HI, la formation des R-loops, la topologie de l’ADN et l’expression génique. De plus, elles attestent de la présence d’un nouvel inhibiteur de gyrase ou d’un mécanisme encore inconnu capable de réguler son activité. Cette surprenante découverte est élémentaire sachant que de nombreux antibiotiques ciblent la gyrase. Finalement, ces études pourront servir également de base à des recherches similaires chez les cellules eucaryotes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcription termination of messenger RNA (mRNA) is normally achieved by polyadenylation followed by Rat1p-dependent 5'-3' exoribonuleolytic degradation of the downstream transcript. Here we show that the yeast ortholog of the dsRNA-specific ribonuclease III (Rnt1p) may trigger Rat1p-dependent termination of RNA transcripts that fail to terminate near polyadenylation signals. Rnt1p cleavage sites were found downstream of several genes, and the deletion of RNT1 resulted in transcription readthrough. Inactivation of Rat1p impaired Rnt1p-dependent termination and resulted in the accumulation of 3' end cleavage products. These results support a model for transcription termination in which cotranscriptional cleavage by Rnt1p provides access for exoribonucleases in the absence of polyadenylation signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé La Ribonucléase P (RNase P) est une enzyme principalement reconnue pour sa participation à la maturation en 5’des ARN de transfert (ARNt). Cependant, d’autres substrats sont reconnus par l’enzyme. En général, la RNase P est composée d’une sous-unité ARN (le P-ARN, codé par le gène rnpB) qui porte le centre actif de l’enzyme et d’une ou de plusieurs sous-unités protéiques (la P-protéine). Les P-ARN chez toutes les bactéries, la majorité des archéobactéries et dans le génome nucléaire de la plupart des eucaryotes, possèdent généralement une structure secondaire très conservée qui inclut le noyau (P1-P4); l’hélice P4 constitue le site catalytique de l’enzyme et l’hélice P1 apparie les extrémités du P-ARN en stabilisant sa structure globale. Les P-ARN mitochondriaux sont souvent moins conservés et difficiles à découvrir. Dans certains cas, les seules régions de structure primaire qui restent conservées sont celles qui définissent le P4 et le P1. Pour la détection des gènes rnpB, un outil de recherche bioinformatique, basé sur la séquence et le profil de structure secondaire, a été développé dans le laboratoire. Cet outil permet le dépistage de toutes les séquences eucaryotes (nucléaires et mitochondriales) du gène avec une très grande confiance (basée sur une valeur statistique, E-value). Chez les champignons, plusieurs ascomycètes encodent un gène rnpB dans leur génome mitochondrial y compris tous les membres du genre d’Aspergillus. Cependant, chez les espèces voisines, Neurospora crassa, Podospora anserina et Sordaria macrospora, une version mitochondriale de ce gène n’existe pas. Au lieu de cela, elles contiennent deux copies nucléaires du gène, légèrement différentes en taille et en contenu nucléotidique. Mon projet a été établi dans le but d’éclaircir l’évolution de la RNase P mitochondriale (mtRNase P) chez ces trois espèces voisines d’Aspergillus. En ce qui concerne les résultats, des modèles de structures secondaires pour les transcrits de ces gènes ont été construits en se basant sur la structure consensus universelle de la sous-unité ARN de la RNase P. Pour les trois espèces, par la comparaison de ces modèles, nous avons établi que les deux copies nucléaires du gène rnpB sont assez distinctes en séquence et en structure pour pouvoir y penser à une spécialisation de fonction de la RNase P. Chez N. crassa, les deux P-ARN sont modifiés probablement par une coiffe et les extrémités 5’, 3’ sont conformes à nos modèles, ayant un P1 allongé. Encore chez N. crassa, nous avons constaté que les deux copies sont transcrites au même niveau dans le cytoplasme et que la plus petite et la plus stable d’entre elles (Nc1) se retrouve dans l’extrait matriciel mitochondrial. Lors du suivi du P-ARN dans diverses sous-fractions provenant de la matrice mitochondriale soluble, Nc1 est associée avec l’activité de la RNase P. La caractérisation du complexe protéique, isolé à partir de la fraction active sur un gel non dénaturant, révèle qu’il contient au moins 87 protéines, 73 d’entre elles ayant déjà une localisation mitochondriale connue. Comme chez la levure, les protéines de ce complexe sont impliquées dans plusieurs fonctions cellulaires comme le processing de l’ADN/ARN, le métabolisme, dans la traduction et d’autres (par exemple : la protéolyse et le repliement des protéines, ainsi que la maintenance du génome mitochondrial). Pour trois protéines, leur fonction est non déterminée.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chez la bactérie Escherichia coli, la topoisomérase I et la gyrase représentent deux topoisomérases majeures qui participent à la régulation du surenroulement de l’ADN. Celles-ci sont codées respectivement par les gènes topA et par gyrA et gyrB. Chez les mutants topA, l’excès de surenroulement négatif qui est généré en amont de la polymérase ARN lors de la phase d’élongation de la transcription de l’ADN, entraine la formation de R-loops. Les R-loops sont des hybrides ARN-ADN qui in vivo sont formés lorsque l’ARN nouvellement transcrit forme un hybride avec le brin d’ADN matrice, le brin d’ADN complémentaire demeurant sous forme simple brin. La RNase HI est une endoribonucléase codée par le gène rnhA. Elle dégrade l’ARN de R-loops, entre autres, pour empêcher l’initiation de la réplication à des sites autres que l’origine normale, oriC. Chez les mutants rnhA, on observe une réplication indépendante de l’origine oriC. Ce type de réplication appelé cSDR, pourrait donc expliquer, du moins en partie, l’inhibition de la croissance de doubles mutants topA rnhA. A l’aide de la mutagenèse au transposon Tn5, il a été possible d’isoler des suppresseurs extragéniques qui permettaient la croissance des doubles mutants topA rnhA. Plusieurs de ces suppresseurs ont le transposon inséré dans le gène codant pour la RNase E, l’endoribonucléase principale impliquée dans la dégradation des ARNms chez E. coli. La majorité des insertions se retrouvent dans la partie C-terminale de la protéine qui est impliquée dans l’assemblage d’un complexe multiprotéique appelé l’ARN dégradosome. Les résultats obtenus démontrent que ces suppresseurs diminuent le cSDR ainsi que la réponse SOS induite constitutivement en l’absence de la RNase HI. Sachant que la RNase HI est une endoribonucléase tout comme la RNase E, une collaboration entre les deux enzymes suggère que la RNase E pourrait également jouer un rôle potentiel dans le contrôle de la formation des R-loops et bien évidemment de leur retrait au sein de la cellule. À l’opposé, il est possible que la RNase HI puisse avoir comme autre fonction la prise en charge de la maturation et de la dégradation des molécules d’ARNs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The DNA nuclease activity encoded by the end1 gene, and its inactivation by mutation, was described in connection with the characterization of DNA topoisomerases in the fission yeast Schizosaccharomyces pombe (Uemura and Yanagida, 1984). Subsequently, end1 mutant strains were used for the preparation of cell extracts for the study of enzymes and intermediates involved in DNA metabolism. The molecular identification of the end1 gene and its identity with the pnu1 gene is presented. The end1-458 mutation alters glycine to glutamate in the conserved motif TGPYLP. The pnu1 gene codes for an RNase that is induced by nitrogen starvation (Nakashima et al., 2002b). Thus, the End1/Pnu1 protein, like related mitochondrial proteins in other organisms, is an example of a sugar-non-specific nuclease. The analysis of strains carrying a pnu1 deletion revealed no defects in meiotic recombination and spore viability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interferon (IFN) type-I is of utmost importance in the innate antiviral defence of eukaryotic cells. The cells express intra- and extracellular receptors that monitor their surroundings for the presence of viral genomes. Bovine viral diarrhoea virus (BVDV), a Pestivirus of the family Flaviviridae, is able to prevent IFN synthesis induced by poly(IC), a synthetic dsRNA. The evasion of innate immunity might be a decisive ability of BVDV to establish persistent infection in its host. We report that ds- as well as ssRNA fragments of viral origin are able to trigger IFN synthesis, and that the viral envelope glycoprotein E(rns), that is also secreted from infected cells, is able to inhibit IFN expression induced by these extracellular viral RNAs. The RNase activity of E(rns) is required for this inhibition, and E(rns) degrades ds- and ssRNA at neutral pH. In addition, cells infected with a cytopathogenic strain of BVDV contain more dsRNA than cells infected with the homologous non-cytopathogenic strain, and the intracellular viral RNA was able to excite the IFN system in a 5'-triphosphate-, i.e. RIG-I-, independent manner. Functionally, E(rns) might represent a decoy receptor that binds and enzymatically degrades viral RNA that otherwise might activate the IFN defence by binding to Toll-like receptors of uninfected cells. Thus, the pestiviral RNase efficiently manipulates the host's self-nonself discrimination to successfully establish and maintain persistence and immunotolerance.