954 resultados para Sélection de variables
Resumo:
Ce papier utilise les réseaux de neurones avec un algorithme incrémental comme outil de sélection des facteurs de risques les plus pertinents dans la maladie du cancer du sein. Les résultats témoignent de la pertinence de l’approche neuronale avec un algorithme incrémentale dans ce domaine de recherche. A partir d’un échantillon de 248 patientes atteintes par cette maladie, il nous a été possible de déterminer la combinaison optimale des facteurs permettant d’atteindre une bonne performance prédictive du type de tumeur maligne et bénigne.
Resumo:
Les simulations ont été implémentées avec le programme Java.
Resumo:
The incidence of cardiovascular diseases (CVD) has been increasing according to the European and global statistics. Thus, the development of new analytical devices, such as biosensors for assessing the risk of CVD could become a valuable approach for the improvement of healthcare service. In latest years, the nanotechnology has provided new materials with improved electronic properties which have an important contribution in the transduction mechanism of biosensors. Thus, in this thesis, biosensors based on field effect transistors with single-walled carbon nanotubes (NTFET) were developed for the detection of C-reactive protein (CRP) in clinical samples, that is, blood serum and saliva from a group of control patients and a group of CVD risk patients. CRP is an acute-phase protein, which is commonly known as the best validated biomarker for the assessment of CVD, the single-walled carbon nanotubes (SWCNT) were applied as transduction components, and the immunoreaction (interaction between the CRP antigen and the antibodies specific to CRP) was used as the mechanism of molecular recognition for the label-free detection of CRP. After the microfabrication of field effect transistors (FET), the screening of the most important variables for the dispersion of SWCNT, the assemblage of NTFET, and their application on standard solutions of CRP, it was found that NTFET respond accurately to CRP both in saliva and in serum samples, since similar CRP levels were found with the NTFET and the traditional methodology (ELISA technique). On the other hand, a strong correlation between salivary and serum CRP was found with NTFET, which means that saliva could be used, based on non-invasive sampling, as an alternative fluid to blood serum. It was also shown that NTFET could discriminate control patients from CVD risk patients, allowing the determination of a cut-off value for salivary CRP of 1900 ng L-1, which corresponds to the well established cut-off of 3 mg L-1 for CRP in serum, constituting an important finding for the possible establishment of a new range of CRP levels based on saliva. According to the data provided from the volunteer patients regarding their lipoprotein profile and lifestyle factors, it was concluded that the control and the CVD risk patients could be separated taking into account the various risk factors established in literature as strong contributors for developing a CVD, such as triglycerides, serum CRP, total cholesterol, LDL cholesterol, body mass index, Framingham risk score, hypertension, dyslipidemia, and diabetes mellitus. Thus, this work could provide an additional contribution to the understanding of the association of biomarkers levels in serum and saliva samples, and above all, cost-effective, rapid, label-free, and disposable NTFET were developed, based on a noninvasive sampling, for the assessment of CVD risk, thus constituting a potential point-of-care technology.
Resumo:
La dernière décennie a connu un intérêt croissant pour les problèmes posés par les variables instrumentales faibles dans la littérature économétrique, c’est-à-dire les situations où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter. En effet, il est bien connu que lorsque les instruments sont faibles, les distributions des statistiques de Student, de Wald, du ratio de vraisemblance et du multiplicateur de Lagrange ne sont plus standard et dépendent souvent de paramètres de nuisance. Plusieurs études empiriques portant notamment sur les modèles de rendements à l’éducation [Angrist et Krueger (1991, 1995), Angrist et al. (1999), Bound et al. (1995), Dufour et Taamouti (2007)] et d’évaluation des actifs financiers (C-CAPM) [Hansen et Singleton (1982,1983), Stock et Wright (2000)], où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter, ont montré que l’utilisation de ces statistiques conduit souvent à des résultats peu fiables. Un remède à ce problème est l’utilisation de tests robustes à l’identification [Anderson et Rubin (1949), Moreira (2002), Kleibergen (2003), Dufour et Taamouti (2007)]. Cependant, il n’existe aucune littérature économétrique sur la qualité des procédures robustes à l’identification lorsque les instruments disponibles sont endogènes ou à la fois endogènes et faibles. Cela soulève la question de savoir ce qui arrive aux procédures d’inférence robustes à l’identification lorsque certaines variables instrumentales supposées exogènes ne le sont pas effectivement. Plus précisément, qu’arrive-t-il si une variable instrumentale invalide est ajoutée à un ensemble d’instruments valides? Ces procédures se comportent-elles différemment? Et si l’endogénéité des variables instrumentales pose des difficultés majeures à l’inférence statistique, peut-on proposer des procédures de tests qui sélectionnent les instruments lorsqu’ils sont à la fois forts et valides? Est-il possible de proposer les proédures de sélection d’instruments qui demeurent valides même en présence d’identification faible? Cette thèse se focalise sur les modèles structurels (modèles à équations simultanées) et apporte des réponses à ces questions à travers quatre essais. Le premier essai est publié dans Journal of Statistical Planning and Inference 138 (2008) 2649 – 2661. Dans cet essai, nous analysons les effets de l’endogénéité des instruments sur deux statistiques de test robustes à l’identification: la statistique d’Anderson et Rubin (AR, 1949) et la statistique de Kleibergen (K, 2003), avec ou sans instruments faibles. D’abord, lorsque le paramètre qui contrôle l’endogénéité des instruments est fixe (ne dépend pas de la taille de l’échantillon), nous montrons que toutes ces procédures sont en général convergentes contre la présence d’instruments invalides (c’est-à-dire détectent la présence d’instruments invalides) indépendamment de leur qualité (forts ou faibles). Nous décrivons aussi des cas où cette convergence peut ne pas tenir, mais la distribution asymptotique est modifiée d’une manière qui pourrait conduire à des distorsions de niveau même pour de grands échantillons. Ceci inclut, en particulier, les cas où l’estimateur des double moindres carrés demeure convergent, mais les tests sont asymptotiquement invalides. Ensuite, lorsque les instruments sont localement exogènes (c’est-à-dire le paramètre d’endogénéité converge vers zéro lorsque la taille de l’échantillon augmente), nous montrons que ces tests convergent vers des distributions chi-carré non centrées, que les instruments soient forts ou faibles. Nous caractérisons aussi les situations où le paramètre de non centralité est nul et la distribution asymptotique des statistiques demeure la même que dans le cas des instruments valides (malgré la présence des instruments invalides). Le deuxième essai étudie l’impact des instruments faibles sur les tests de spécification du type Durbin-Wu-Hausman (DWH) ainsi que le test de Revankar et Hartley (1973). Nous proposons une analyse en petit et grand échantillon de la distribution de ces tests sous l’hypothèse nulle (niveau) et l’alternative (puissance), incluant les cas où l’identification est déficiente ou faible (instruments faibles). Notre analyse en petit échantillon founit plusieurs perspectives ainsi que des extensions des précédentes procédures. En effet, la caractérisation de la distribution de ces statistiques en petit échantillon permet la construction des tests de Monte Carlo exacts pour l’exogénéité même avec les erreurs non Gaussiens. Nous montrons que ces tests sont typiquement robustes aux intruments faibles (le niveau est contrôlé). De plus, nous fournissons une caractérisation de la puissance des tests, qui exhibe clairement les facteurs qui déterminent la puissance. Nous montrons que les tests n’ont pas de puissance lorsque tous les instruments sont faibles [similaire à Guggenberger(2008)]. Cependant, la puissance existe tant qu’au moins un seul instruments est fort. La conclusion de Guggenberger (2008) concerne le cas où tous les instruments sont faibles (un cas d’intérêt mineur en pratique). Notre théorie asymptotique sous les hypothèses affaiblies confirme la théorie en échantillon fini. Par ailleurs, nous présentons une analyse de Monte Carlo indiquant que: (1) l’estimateur des moindres carrés ordinaires est plus efficace que celui des doubles moindres carrés lorsque les instruments sont faibles et l’endogenéité modérée [conclusion similaire à celle de Kiviet and Niemczyk (2007)]; (2) les estimateurs pré-test basés sur les tests d’exogenété ont une excellente performance par rapport aux doubles moindres carrés. Ceci suggère que la méthode des variables instrumentales ne devrait être appliquée que si l’on a la certitude d’avoir des instruments forts. Donc, les conclusions de Guggenberger (2008) sont mitigées et pourraient être trompeuses. Nous illustrons nos résultats théoriques à travers des expériences de simulation et deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le problème bien connu du rendement à l’éducation. Le troisième essai étend le test d’exogénéité du type Wald proposé par Dufour (1987) aux cas où les erreurs de la régression ont une distribution non-normale. Nous proposons une nouvelle version du précédent test qui est valide même en présence d’erreurs non-Gaussiens. Contrairement aux procédures de test d’exogénéité usuelles (tests de Durbin-Wu-Hausman et de Rvankar- Hartley), le test de Wald permet de résoudre un problème courant dans les travaux empiriques qui consiste à tester l’exogénéité partielle d’un sous ensemble de variables. Nous proposons deux nouveaux estimateurs pré-test basés sur le test de Wald qui performent mieux (en terme d’erreur quadratique moyenne) que l’estimateur IV usuel lorsque les variables instrumentales sont faibles et l’endogénéité modérée. Nous montrons également que ce test peut servir de procédure de sélection de variables instrumentales. Nous illustrons les résultats théoriques par deux applications empiriques: le modèle bien connu d’équation du salaire [Angist et Krueger (1991, 1999)] et les rendements d’échelle [Nerlove (1963)]. Nos résultats suggèrent que l’éducation de la mère expliquerait le décrochage de son fils, que l’output est une variable endogène dans l’estimation du coût de la firme et que le prix du fuel en est un instrument valide pour l’output. Le quatrième essai résout deux problèmes très importants dans la littérature économétrique. D’abord, bien que le test de Wald initial ou étendu permette de construire les régions de confiance et de tester les restrictions linéaires sur les covariances, il suppose que les paramètres du modèle sont identifiés. Lorsque l’identification est faible (instruments faiblement corrélés avec la variable à instrumenter), ce test n’est en général plus valide. Cet essai développe une procédure d’inférence robuste à l’identification (instruments faibles) qui permet de construire des régions de confiance pour la matrices de covariances entre les erreurs de la régression et les variables explicatives (possiblement endogènes). Nous fournissons les expressions analytiques des régions de confiance et caractérisons les conditions nécessaires et suffisantes sous lesquelles ils sont bornés. La procédure proposée demeure valide même pour de petits échantillons et elle est aussi asymptotiquement robuste à l’hétéroscédasticité et l’autocorrélation des erreurs. Ensuite, les résultats sont utilisés pour développer les tests d’exogénéité partielle robustes à l’identification. Les simulations Monte Carlo indiquent que ces tests contrôlent le niveau et ont de la puissance même si les instruments sont faibles. Ceci nous permet de proposer une procédure valide de sélection de variables instrumentales même s’il y a un problème d’identification. La procédure de sélection des instruments est basée sur deux nouveaux estimateurs pré-test qui combinent l’estimateur IV usuel et les estimateurs IV partiels. Nos simulations montrent que: (1) tout comme l’estimateur des moindres carrés ordinaires, les estimateurs IV partiels sont plus efficaces que l’estimateur IV usuel lorsque les instruments sont faibles et l’endogénéité modérée; (2) les estimateurs pré-test ont globalement une excellente performance comparés à l’estimateur IV usuel. Nous illustrons nos résultats théoriques par deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le modèle de rendements à l’éducation. Dans la première application, les études antérieures ont conclu que les instruments n’étaient pas trop faibles [Dufour et Taamouti (2007)] alors qu’ils le sont fortement dans la seconde [Bound (1995), Doko et Dufour (2009)]. Conformément à nos résultats théoriques, nous trouvons les régions de confiance non bornées pour la covariance dans le cas où les instruments sont assez faibles.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Résumé : La capacité de décider parmi plusieurs possibilités d'actions, grâce à l'information sensorielle disponible, est essentielle à un organisme interagissant avec un environnement complexe. Les modèles actuels de sélection d'une action soutiennent que le cerveau traite continuellement l'information sensorielle afin de planifier plusieurs possibilités d'action en parallèle. Dans cette perspective, ces représentations motrices, associées à chaque possibilité d'action, sont en constante compétition entre elles. Afin qu'une alternative puisse être sélectionnée pour le mouvement, une valeur de pondération, intégrant une multitude de facteurs, doit être associée à chacun des plans moteurs afin de venir moduler la compétition. Plusieurs études se sont intéressées aux différents facteurs modulant la sélection de l'action, tels que la disposition de l'environnement, le coût des actions, le niveau de récompense, etc. Par contre, il semble qu'aucune étude n'ait rapporté ce qu'il advient lorsque la valeur de pondération de chacune des actions possibles est identique. Dans ce contexte, quel est l'élément permettant de venir moduler la sélection de l'action? De ce fait, l'objectif principal de mon projet de maitrise est d'investiguer le facteur permettant au cerveau de sélectionner une action lorsque tous les facteurs rapportés dans la littérature sont contrôlés. De récentes données ont montré que les oscillations corticales lentes dans la bande delta peuvent servir d'instrument de sélection attentionnelle en modulant l'amplitude de la réponse neuronale. Ainsi, les stimuli arrivant dans le cortex pendant une phase en delta de forte excitabilité sont amplifiés, tandis que ceux arrivant lors d'une phase en delta de faible excitabilité sont atténués. Ceci dit, il est possible que la phase en delta dans laquelle se trouve le cerveau au moment d'effectuer la sélection d'une action puisse influencer la décision. Utilisant une tâche de sélection de main, cette étude teste l'hypothèse que la sélection de la main est associée à la phase en delta des ensembles neuronaux codant le mouvement de chacune des mains, lorsque tous les facteurs connus influençant la décision sont contrôlés. L'électroencéphalographie (EEG) fut utilisée afin d'enregistrer les signaux corticaux pendant que les participants effectuaient une tâche de sélection de main dans laquelle ils devaient, à chaque essai, atteindre une cible visuelle aussi rapidement que possible en utilisant la main de leur choix. La tâche fut conçue de façon à ce que les facteurs spatiaux et biomécaniques soient contrôlés. Ceci fut réalisé enidentifiant premièrement, sur une base individuelle, l'emplacement de la cible pour laquelle les mains droite et gauche avaient une probabilité équivalente d'être choisies (point d'égalité subjective, PSE). Ensuite, dans l'expérience principale, les participants effectuaient plusieurs mouvements d'atteinte vers des cibles positionnées près et loin du PSE, toujours avec la main de leur choix. L'utilisation de cinq cibles très près du PSE a permis de collecter de nombreux essais dans lesquels la main droite et la main gauche furent sélectionnées en réponse à un même stimulus visuel. Ceci a ainsi permis d'analyser les signaux des deux cortex dans des conditions d'utilisation de la main droite et gauche, tout en contrôlant pour les autres facteurs pouvant moduler la sélection de la main. Les résultats de cette recherche révèlent que l'hémisphère cortical se trouvant dans la phase la plus excitable en delta (près du pic négatif), lors de l'apparition du stimulus, est associé à la fois à la main qui sera sélectionnée ainsi qu'au temps de réaction. Ces résultats montrent que l'excitabilité corticale momentanée (phase du signal) pourrait agir comme un facteur modulant la sélection d'une action. Dans cette optique, ces données élargissent considérablement les modèles actuels en montrant que la sélection d'une action est en partie déterminée par l'état du cerveau au moment d'effectuer un choix, d'une manière qui est indépendante de toutes les variables de décision connues.
Resumo:
The information on climate variations is essential for the research of many subjects, such as the performance of buildings and agricultural production. However, recorded meteorological data are often incomplete. There may be a limited number of locations recorded, while the number of recorded climatic variables and the time intervals can also be inadequate. Therefore, the hourly data of key weather parameters as required by many building simulation programmes are typically not readily available. To overcome this gap in measured information, several empirical methods and weather data generators have been developed. They generally employ statistical analysis techniques to model the variations of individual climatic variables, while the possible interactions between different weather parameters are largely ignored. Based on a statistical analysis of 10 years historical hourly climatic data over all capital cities in Australia, this paper reports on the finding of strong correlations between several specific weather variables. It is found that there are strong linear correlations between the hourly variations of global solar irradiation (GSI) and dry bulb temperature (DBT), and between the hourly variations of DBT and relative humidity (RH). With an increase in GSI, DBT would generally increase, while the RH tends to decrease. However, no such a clear correlation can be found between the DBT and atmospheric pressure (P), and between the DBT and wind speed. These findings will be useful for the research and practice in building performance simulation.
Resumo:
An estimation of costs for maintenance and rehabilitation is subject to variation due to the uncertainties of input parameters. This paper presents the results of an analysis to identify input parameters that affect the prediction of variation in road deterioration. Road data obtained from 1688 km of a national highway located in the tropical northeast of Queensland in Australia were used in the analysis. Data were analysed using a probability-based method, the Monte Carlo simulation technique and HDM-4’s roughness prediction model. The results of the analysis indicated that among the input parameters the variability of pavement strength, rut depth, annual equivalent axle load and initial roughness affected the variability of the predicted roughness. The second part of the paper presents an analysis to assess the variation in cost estimates due to the variability of the overall identified critical input parameters.
Resumo:
Aim – To develop and assess the predictive capabilities of a statistical model that relates routinely collected Trauma Injury Severity Score (TRISS) variables to length of hospital stay (LOS) in survivors of traumatic injury. Method – Retrospective cohort study of adults who sustained a serious traumatic injury, and who survived until discharge from Auckland City, Middlemore, Waikato, or North Shore Hospitals between 2002 and 2006. Cubic-root transformed LOS was analysed using two-level mixed-effects regression models. Results – 1498 eligible patients were identified, 1446 (97%) injured from a blunt mechanism and 52 (3%) from a penetrating mechanism. For blunt mechanism trauma, 1096 (76%) were male, average age was 37 years (range: 15-94 years), and LOS and TRISS score information was available for 1362 patients. Spearman’s correlation and the median absolute prediction error between LOS and the original TRISS model was ρ=0.31 and 10.8 days, respectively, and between LOS and the final multivariable two-level mixed-effects regression model was ρ=0.38 and 6.0 days, respectively. Insufficient data were available for the analysis of penetrating mechanism models. Conclusions – Neither the original TRISS model nor the refined model has sufficient ability to accurately or reliably predict LOS. Additional predictor variables for LOS and other indicators for morbidity need to be considered.