936 resultados para Rutherford backscattering in channeling geometry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

利用卢瑟福沟道背散射技术结合表面的原子力显微分析,对注He的铝镁尖晶石晶体的晶格损伤及表面形变随退火温度变化的关系进行了研究.结果表明,不同注入剂量的样品中晶格损伤和表面形变表现出显著不同的退火行为.分析认为造成损伤演化的这种差异与注入的He原子在晶体中不同的聚集状态有关.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A ZnO layer was grown by metalorganic chemical vapor deposition (MOCVD) on a sapphire (0 0 0 1) substrate. The perpendicular and parallel elastic strain of the ZnO epilayer, e(perpendicular to) = 0.19%, e(parallel to) = -0.29%, respectively, were derived by using the combination of Rutherford backscattering (RBS)/channeling and X-ray diffraction (XRD). The ratio vertical bar e(parallel to)/ e(perpendicular to)vertical bar = 1.5 indicates that ZnO layer is much stiffer in the a-axis direction than in the c-axis direction. By using RBS/C, the depth dependent elastic strain was deduced. The strain is higher at the depth close to the interface and decreases towards the surface. The negative tetragonal distortion was explained by considering the lattice mismatch and thermal mismatch in ZnO thin film. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The depth distribution of the strain-related tetragonal distortion e(T) in the GaN epilayer with low-temperature AlN interlayer (LT-AlN IL) on Si(111) substrate is investigated by Rutherford backscattering and channeling. The samples with the LT-AlN IL of 8 and 16 nm thickness are studied, which are also compared with the sample without the LT-AlN IL. For the sample with 16-nm-thick LT-AlN IL, it is found that there exists a step-down of e(T) of about 0.1% in the strain distribution. Meanwhile, the angular scan around the normal GaN <0001> axis shows a tilt difference about 0.01degrees between the two parts of GaN separated by the LT-AlN IL, which means that these two GaN layers are partially decoupled by the AlN interlayer. However, for the sample with 8-nm-thick LT-AlN IL, neither step-down of e(T) nor the decoupling phenomenon is found. The 0.01degrees decoupled angle in the sample with 16-nm-thick LT-AlN IL confirms the relaxation of the LT-AlN IL. Thus the step-down of e(T) should result from the compressive strain compensation brought by the relaxed AlN interlayer. It is concluded that the strain compensation effect will occur only when the thickness of the LT-AlN IL is beyond a critical thickness. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rutherford backscattering and channeling have been used to characterize the structure of a GaN layer grown on a Si(111) substrate. The results show that a 1.26 mum GaN epitaxial layer with a rather abrupt interface and a good crystalline quality (chi(min)=3.4%) can be grown on a Si(111) substrate. Using the channeling angular scan around an off-normal <1 (2) over bar 13> axis in the {10 (1) over bar0} plane of the GaN layer, the tetragonal distortion e(T), which is caused by the elastic strain in the epilayer, can be determined. Moreover, the depth dependence of the e(T) can be obtained using this technique. A fully relaxed (e(T)=0) GaN layer for a thickness <2.8 mum is expected. (C) 2002 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on structural characterization of AlGaN/GaN superlattices grown on sapphire. The superlattice formation is evidenced by high-resolution x-ray diffraction and transmission electron microscopy. The high resolution x-ray diffraction spectra exhibit a pattern of satellite peaks. The in-plane lattice constants of the superlattices indicate the coherent growth of the AlGaN layer onto GaN. The average At composition in the superlattices is determined to be 0.08 by Rutherford backscattering spectroscopy. The average parallel and perpendicular elastic strains for the SLs are determined to be (e(parallel to)) = +0.25% and (e(perpendicular to)) = -0.17%. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficiency of the injection and recombination processes in InGaN/GaN LEDs is governed by the properties of the active region of the devices, which strongly depend on the conditions used for the growth of the epitaxial material. To improve device quality, it is very important to understand how the high temperatures used during the growth process can modify the quality of the epitaxial material. With this paper we present a study of the modifications in the properties of InGaN/GaN LED structures induced by high temperature annealing: thermal stress tests were carried out at 900 °C, in nitrogen atmosphere, on selected samples. The efficiency and the recombination dynamics were evaluated by photoluminescence measurements (both integrated and time-resolved), while the properties of the epitaxial material were studied by Secondary Ion Mass Spectroscopy (SIMS) and Rutherford Backscattering (RBS) channeling measurements. Results indicate that exposure to high temperatures may lead to: (i) a significant increase in the photoluminescence efficiency of the devices; (ii) a decrease in the parasitic emission bands located between 380 nm and 400 nm; (iii) an increase in carrier lifetime, as detected by time-resolved photoluminescence measurements. The increase in device efficiency is tentatively ascribed to an improvement in the crystallographic quality of the samples. © 2013 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rutherford backscattering and channeling is combined with X-ray diffraction to study the depth dependence of crystalline quality in InN layers grown by metalorganic chemical vapor deposition on sapphire substrate. The poorest crystalline quality in InN layer is produced at the intermediate region over 100 nm away from the InN/sapphire interface. With increasing layer thickness the crystalline quality improves to a certain degree dependent on the growth temperature. The InN sample grown at 450 degrees C is found to be more homogeneous than the sample grown at 550 degrees C. The difference in the defect profile is explained by the temperature-dependent growth modes. The inhomogeneity of structural quality and related properties such as carrier concentration and strain field is possibly the reason to observe a high energy wing in PL spectrum of the InN sample grown at 550 degrees C. (c) 2006 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single crystals of 6H-SiC were implanted at 600 K with 100 key He ions to three successively fluences and subsequently annealed at different temperatures ranging from 873 to 1473 K in vacuum. The recovery of lattice damage was investigated by different techniques including Rutherford backscattering spectrometry in channeling geometry, Raman spectroscopy and Fourier transform infrared spectroscopy. All three techniques showed that the damage induced by helium ion implantation in the lattice is closely related to the fluence. Rutherford backscattering spectrometry/channeling data on high temperature implantations suggest that for a fluence of 3 x 10(16) He+/cm(2), extended defects are created by thermal annealing to 1473 K. Apart from a well-known intensity decrease of scattering peaks in Raman spectroscopy it was found that the absorbance peak in Fourier transform infrared spectroscopy due to the stretching vibration of Si-C bond shifted to smaller wave numbers with increasing fluence, shifting back to larger wave numbers with increasing annealing temperature. These phenomena are attributed to different lattice damage behavior induced by the hot implantation process, in which simultaneous recovery was prevailing. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate that a controllable cracking can be realized in Si with a buried strain layer when hydrogen is introduced using traditional H-ion implantation techniques. However, H stimulated cracking is dependent on H projected ranges; cracking occurs along a Si0.8Ge0.2 strain layer only if the H projected range is shallower than the depth of the strained layer. The absence of cracking for H ranges deeper than the strain layer is attributed to ion-irradiation induced strain relaxation, which is confirmed by Rutherford-backscattering-spectrometry channeling angular scans. The study reveals the importance of strain in initializing continuous cracking with extremely low H concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Areal bone mineral density (aBMD) is the most common surrogate measurement for assessing the bone strength of the proximal femur associated with osteoporosis. Additional factors, however, contribute to the overall strength of the proximal femur, primarily the anatomical geometry. Finite element analysis (FEA) is an effective and widely used computerbased simulation technique for modeling mechanical loading of various engineering structures, providing predictions of displacement and induced stress distribution due to the applied load. FEA is therefore inherently dependent upon both density and anatomical geometry. FEA may be performed on both three-dimensional and two-dimensional models of the proximal femur derived from radiographic images, from which the mechanical stiffness may be redicted. It is examined whether the outcome measures of two-dimensional FEA, two-dimensional, finite element analysis of X-ray images (FEXI), and three-dimensional FEA computed stiffness of the proximal femur were more sensitive than aBMD to changes in trabecular bone density and femur geometry. It is assumed that if an outcome measure follows known trends with changes in density and geometric parameters, then an increased sensitivity will be indicative of an improved prediction of bone strength. All three outcome measures increased non-linearly with trabecular bone density, increased linearly with cortical shell thickness and neck width, decreased linearly with neck length, and were relatively insensitive to neck-shaft angle. For femoral head radius, aBMD was relatively insensitive, with two-dimensional FEXI and threedimensional FEA demonstrating a non-linear increase and decrease in sensitivity, respectively. For neck anteversion, aBMD decreased non-linearly, whereas both two-dimensional FEXI and three dimensional FEA demonstrated a parabolic-type relationship, with maximum stiffness achieved at an angle of approximately 15o. Multi-parameter analysis showed that all three outcome measures demonstrated their highest sensitivity to a change in cortical thickness. When changes in all input parameters were considered simultaneously, three and twodimensional FEA had statistically equal sensitivities (0.41±0.20 and 0.42±0.16 respectively, p = ns) that were significantly higher than the sensitivity of aBMD (0.24±0.07; p = 0.014 and 0.002 for three-dimensional and two-dimensional FEA respectively). This simulation study suggests that since mechanical integrity and FEA are inherently dependent upon anatomical geometry, FEXI stiffness, being derived from conventional two-dimensional radiographic images, may provide an improvement in the prediction of bone strength of the proximal femur than currently provided by aBMD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach to Penrose's twistor algebra is given. It is based on the use of a generalised quaternion algebra for the translation of statements in projective five-space into equivalent statements in twistor (conformal spinor) space. The formalism leads toSO(4, 2)-covariant formulations of the Pauli-Kofink and Fierz relations among Dirac bilinears, and generalisations of these relations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Survey standardization procedures can reduce the variability in trawl catch efficiency thus producing more precise estimates of biomass. One such procedure, towing with equal amounts of trawl warp on both sides of the net, was experimentally investigated for its importance in determining optimal trawl geometry and for evaluating the effectiveness of the recent National Oceanic and Atmospheric Administration (NOAA) national protocol on accurate measurement of trawl warps. This recent standard for measuring warp length requires that the difference between warp lengths can be no more than 4% of the distance between the otter doors measured along the bridles and footrope. Trawl performance data from repetitive towing with warp differentials of 0, 3, 5, 7, 9, 11, and 20 m were analyzed for their effect on three determinants of flatfish catch efficiency: footrope distance off-bottom, bridle length in contact with the bottom, and area swept by the net. Our results indicated that the distortion of the trawl caused by asymmetry in trawl warp length could have a negative inf luence on flatfish catch efficiency. At a difference of 7 m in warp length, the NOAA 4% threshold value for the 83112 Eastern survey trawl used in our study, we found no effect on the acous-tic-based measures of door spread, wing spread, and headrope height off-bottom. However, the sensitivity of the trawl to 7 m of warp offset could be seen as footrope distances off-bottom increased slightly (particularly in the center region of the net where flatfish escapement is highest), and as the width of the bridle path responsible for flatfish herding, together with the effective net width, was reduced. For this survey trawl, a NOAA threshold value of 4% should be considered a maximum. A more conservative value (less than 4%) would likely reduce potential bias in estimates of relative abundance caused by large differences in warp length approaching 7 m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The strain state of 570nm AlXGa1-xN layers grown on 600nm GaN template by metal organic chemical vapor deposition was studied using Rutherford backscattering (RBS)/channeling and triple-axis X-ray diffraction measurements. The results showed that the degree of relaxation (R) of AlxGa1-xN layers increased almost linearly when x less than or equal to 0.42 and reached to 70% when x = 0.42. Above 0.42, the value of R varied slowly and AI(x)Ga(1-x)N layers almost full relaxed when x = 1 (AIN). In this work the underlying GaN layer was in compressive strain, which resulted in the reduction of lattice misfit between GaN and AlxGa1-xN, and a 570nm AlxGa1-xN layer with the composition of about 0.16 might be grown on GaN coherently from the extrapolation. The different shape of (0004) diffraction peak was discussed to be related to the relaxation. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethnomathematical research, together with digital technologies (WebQuest) and Drama-in- Education (DiE) techniques, can create a fruitful learning environment in a mathematics classroom—a hybrid/third space—enabling increased student participation and higher levels of cognitive engagement. This article examines how ethnomathematical ideas processed within the experiential environment established by the Drama-in-Education techniques challenged students‘ conceptions of the nature of mathematics, the ways in which students engaged with mathematics learning using mind and body, and the ̳dialogue‘ that was developed between the Discourse situated in a particular practice and the classroom Discourse of mathematics teaching. The analysis focuses on an interdisciplinary project based on an ethnomathematical study of a designing tradition carried out by the researchers themselves, involving a search for informal mathematics and the connections with context and culture; 10th grade students in a public school in Athens were introduced to the mathematics content via an original WebQuest based on this previous ethnomathematical study; Geometry content was further introduced and mediated using the Drama-in-Education (DiE) techniques. Students contributed in an unfolding dialogue between formal and informal knowledge, renegotiating both mathematical concepts and their perception of mathematics as a discipline.