469 resultados para Rotations
Resumo:
Objective: To determine the frequency and nature of intern underperformance as documented on in-training assessment forms. Methods: A retrospective review of intern assessment forms from a 2 year period (2009–2010) was conducted at a tertiary referral hospital in Brisbane, Queensland. The frequency of interns assessed as ‘requiring substantial assistance’ and/or ‘requires further development’ on mid- or end-of-term assessment forms was determined. Forms were analysed by the clinical rotation, time of year and domain(s) of clinical practice in which underperformance was documented. Results: During 2009 and 2010 the overall documented incidence of intern underperformance was 2.4% (95% CI 1.5–3.9%). Clinical rotation in emergency medicine detected significantly more underperformance compared with other rotations (P < 0.01). Interns predominantly had difficulty with ‘clinical judgment and decision-making skills’, ‘time management skills’ and ‘teamwork and colleagues’ (62.5%, 55% and 32.5% of underperforming assessments, respectively). Time of the year did not affect frequency of underperformance. A proportion of 13.4% (95% CI 9.2–19.0%) of interns working at the institution over the study period received at least one assessment in which underperformance was documented. Seventy-six per cent of those interns who had underperformance identified by mid-term assessment successfully completed the term following remediation. Conclusion: The prevalence of underperformance among interns is low, although higher than previously suggested. Emergency medicine detects relatively more interns in difficulty than other rotations.
Resumo:
Algorithms for planning quasistatic attitude maneuvers based on the Jacobian of the forward kinematic mapping of fully-reversed (FR) sequences of rotations are proposed in this paper. An FR sequence of rotations is a series of finite rotations that consists of initial rotations about the axes of a body-fixed coordinate frame and subsequent rotations that undo these initial rotations. Unlike the Jacobian of conventional systems such as a robot manipulator, the Jacobian of the system manipulated through FR rotations is a null matrix at the identity, which leads to a total breakdown of the traditional Jacobian formulation. Therefore, the Jacobian algorithm is reformulated and implemented so as to synthesize an FR sequence for a desired rotational displacement. The Jacobian-based algorithm presented in this paper identifies particular six-rotation FR sequences that synthesize desired orientations. We developed the single-step and the multiple-step Jacobian methods to accomplish a given task using six-rotation FR sequences. The single-step Jacobian method identifies a specific FR sequence for a given desired orientation and the multiple-step Jacobian algorithm synthesizes physically feasible FR rotations on an optimal path. A comparison with existing algorithms verifies the fast convergence ability of the Jacobian-based algorithm. Unlike closed-form solutions to the inverse kinematics problem, the Jacobian-based algorithm determines the most efficient FR sequence that yields a desired rotational displacement through a simple and inexpensive numerical calculation. The procedure presented here is useful for those motion planning problems wherein the Jacobian is singular or null.
Resumo:
Dwindling water supplies for irrigation are prompting alternative management choices by irrigators. Limited irrigation, where less water is applied than full crop demand, may be a viable approach. Application of limited irrigation to corn was examined in this research. Corn was grown in crop rotations with dryland, limited irrigation, or full irrigation management from 1985 to 1999. Crop rotations included corn following corn (continuous corn), corn following wheat, followed by soybean (wheat-corn-soybean), and corn following soybean (corn-soybean). Full irrigation was managed to meet crop evapotranspiration requirements (ETc). Limited irrigation was managed with a seasonal target of no more than 150 mm applied. Precipitation patterns influenced the outcomes of measured parameters. Dryland yields had the most variation, while fully irrigated yields varied the least. Limited irrigation yields were 80% to 90%> of fully irrigated yields, but the limited irrigation plots received about half the applied water. Grain yields were significantly different among irrigation treatments. Yields were not significantly different among rotation treatments for all years and water treatments. For soil water parameters, more statistical differences were detected among the water management treatments than among the crop rotation treatments. Economic projections of these management practices showed that full irrigation produced the most income if water was available. Limited irrigation increased income significantly from dryland management.
Resumo:
Information on the effects of growing cotton (Gossypium hirsutum L.)-based crop rotations on soil quality of dryland Vertisols is sparse. The objective of this study was to quantify the effects of growing cereal and leguminous crops in rotation with dryland cotton on physical and chemical properties of a grey Vertisol near Warra, SE Queensland, Australia. The experimental treatments, selected after consultations with local cotton growers, were continuous cotton (T1), cotton-sorghum (Sorghum bicolor (L.) Moench.) (T2), cotton-wheat (Triticum aestivum L.) double cropped (T3), cotton-chickpea (Cicer arietinum L.) double cropped followed by wheat (T4) and cotton-wheat (T5). From 1993 to 1996 land preparation was by chisel ploughing to about 0.2 m followed by two to four cultivations with a Gyral tyne cultivator. Thereafter all crops were sown with zero tillage except for cultivation with a chisel plough to about 0.07-0.1 m after cotton picking to control heliothis moth pupae. Soil was sampled from 1996 to 2004 and physical (air-filled porosity of oven-dried soil, an indicator of soil compaction; plastic limit; linear shrinkage; dispersion index) and chemical (pH in 0.01 M CaCl2, organic carbon, exchangeable Ca, Mg, K and Na contents) properties measured. Crop rotation affected soil properties only with respect to exchangeable Na content and air-filled porosity. In the surface 0.15 m during 2000 and 2001 lowest air-filled porosity occurred with T1 (average of 34.6 m3/100 m3) and the highest with T3 (average of 38.9 m3/100 m3). Air-filled porosity decreased in the same depth between 1997 and 1998 from 45.0 to 36.1 m3/100 m3, presumably due to smearing and compaction caused by shallow cultivation in wet soil. In the subsoil, T1 and T2 frequently had lower air-filled porosity values in comparison with T3, T4 and T5, particularly during the early stages of the experiment, although values under T1 increased subsequently. In general, compaction was less under rotations which included a wheat crop (T3, T4, T5). For example, average air-filled porosity (in m3/100 m3) in the 0.15-0.30 m depth from 1996 to 1999 was 19.8 with both T1 and T2, and 21.2 with T3, 21.1 with T4 and 21.5 with T5. From 2000 to 2004, average air-filled porosity (in m3/100 m3) in the same depth was 21.3 with T1, 19.0 with T2, 19.8 with T3, 20.0 with T4 and 20.5 with T5. The rotation which included chickpea (T4) resulted in the lowest exchangeable Na content, although differences among rotations were small. Where only a cereal crop with a fibrous root system was sown in rotation with cotton (T2, T3, T5) linear shrinkage in the 0.45-0.60 m depth was lower than in rotations, which included tap-rooted crops such as chickpea (T4) or continuous cotton (T1). Dispersion index and organic carbon decreased, and plastic limit increased with time. Soil organic carbon stocks decreased at a rate of 1.2 Mg/ha/year. Lowest average cotton lint yield occurred with T2 (0.54 Mg/ha) and highest wheat yield with T3 (2.8 Mg/ha). Rotations which include a wheat crop are more likely to result in better soil structure and cotton lint yield than cotton-sorghum or continuous cotton.
Resumo:
Growing legume fallow crops has proven to be an important factor in reducing the yield decline effect in sugarcane production. Legumes can also provide a direct economic benefit to sugarcane farmers by providing a source of nitrogen. Further, in some instances, income can flow from the sale, of grain or seed. The following case study provides an insight into the changes made by Russell Young, a sugarcane farmer situated in the Rita Island area of the Burdekin district. The case study focuses on the economics of the old farming system versus a new farming system. The old farming system is based on the conventional farming practices previously used by the Young family in 2002 compared to the 2006 farming system which involves a reduction in tillage practices and use of a Soybean rotational crop for seed production. A whole-of-farm was used to assess the impact of the new farming system on farm profitability. A whole-of-farm economic analysis looks at the impact of a change in farming practice across the whole business, rather than focusing on one single component. This case study is specific to an individual grower’s situation and is not representative of all situations. When evaluating a farming system change, it is important to have a detailed plan.
Resumo:
Echinochloa colona is the most common grass weed of summer fallows in the grain-cropping systems of the subtropical region of Australia. Glyphosate is the most commonly used herbicide for summer grass control in fallows in this region. The world's first population of glyphosate-resistant E. colona was confirmed in Australia in 2007 and, since then, >70 populations have been confirmed to be resistant in the subtropical region. The efficacy of alternative herbicides on glyphosate-susceptible populations was evaluated in three field experiments and on both glyphosate-susceptible and glyphosate-resistant populations in two pot experiments. The treatments were knockdown and pre-emergence herbicides that were applied as a single application (alone or in a mixture) or as part of a sequential application to weeds at different growth stages. Glyphosate at 720 g ai ha−1 provided good control of small glyphosate-susceptible plants (pre- to early tillering), but was not always effective on larger susceptible plants. Paraquat was effective and the most reliable when applied at 500 g ai ha−1 on small plants, irrespective of the glyphosate resistance status. The sequential application of glyphosate followed by paraquat provided 96–100% control across all experiments, irrespective of the growth stage, and the addition of metolachlor and metolachlor + atrazine to glyphosate or paraquat significantly reduced subsequent emergence. Herbicide treatments have been identified that provide excellent control of small E. colona plants, irrespective of their glyphosate resistance status. These tactics of knockdown herbicides, sequential applications and pre-emergence herbicides should be incorporated into an integrated weed management strategy in order to greatly improve E. colona control, reduce seed production by the sprayed survivors and to minimize the risk of the further development of glyphosate resistance.
Resumo:
A numerical integration procedure for rotational motion using a rotation vector parametrization is explored from an engineering perspective by using rudimentary vector analysis. The incremental rotation vector, angular velocity and acceleration correspond to different tangent spaces of the rotation manifold at different times and have a non-vectorial character. We rewrite the equation of motion in terms of vectors lying in the same tangent space, facilitating vector space operations consistent with the underlying geometric structure. While any integration algorithm (that works within a vector space setting) may be used, we presently employ a family of explicit Runge-Kutta algorithms to solve this equation. While this work is primarily motivated out of a need for highly accurate numerical solutions of dissipative rotational systems of engineering interest, we also compare the numerical performance of the present scheme with some of the invariant preserving schemes, namely ALGO-C1, STW, LIEMIDEA] and SUBCYC-M. Numerical results show better local accuracy via the present approach vis-a-vis the preserving algorithms. It is also noted that the preserving algorithms do not simultaneously preserve all constants of motion. We incorporate adaptive time-stepping within the present scheme and this in turn enables still higher accuracy and a `near preservation' of constants of motion over significantly longer intervals. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
The dynamics of poly(isobutyl methacrylate) in toluene solution has been examined by C-13 spin-lattice relaxation time and NOE measurements as a function of temperature. The experiments were performed at 50.3 and 100.6 MHz. The backbone carbon relaxation data have been analyzed using the Dejean-Laupretre-Monnerie (DLM) model, which describes the dynamical processes in the backbone in terms of conformational transitions and bond librations. The relaxation data of the side chain nuclei have been analyzed by assuming different motional models, namely, unrestricted rotational diffusion, three site jumps, and restricted rotational diffusion. The different models have been compared for their ability to reproduce the experimental spin-lattice relaxation times and also to predict the behavior of NOE as a function of temperature. Conformational energy calculations have been carried out on a model compound by using the semiempirical quantum chemical method, AM1, and the results confirm the validity of the motional models used to describe the side-chain motion.
Resumo:
Time-resolved Kerr rotation (TRKR) measurements based on pump-probe arrangement were carried out at 5 K on the monolayer fluctuation induced InAs/GaAs quantum disks grown on GaAs substrate without external magnetic field. The lineshape of TRKR signals shows an unusual dependence on the excitation wavelength, especially antisymmetric step-shaped structures appearing when the excitation wavelength was resonantly scanned over the heavy- and light-hole subbands. Moreover, these step structures possess an almost identical decay time of similar to 40 Ps which is believed to be the characteristic spin dephasing time of electrons in the extremely narrow InAs/GaAs quantum disks.
Resumo:
High spin states of Dy-144 have been studied through in-beam gamma-ray spectroscopy by using the reaction Mo-92(Fe-56,2p2n). It has been found that the continuation of the ground-state band forks into three Delta I=2 bands above the 8(+) state. This forking has been attributed to the alignments of pi h(11/2)(2) or nu h(11/2)(-2) configurations with the help of the systematics in neighboring nuclei. Additionally a negative-parity sideband of Delta I=2 cascades has been observed to start from the 5((-)) state and continue to a dipole band above the (13(-)) state through another negative-parity sideband of Delta I=2 cascades in between. These structures have been discussed from the viewpoint of a competition between "Magnetic Rotation" and "Anti-magnetic Rotation" based on a classical particles-plus-rotor model.