928 resultados para Robust Multivariable Controller Design
Resumo:
This paper addresses advanced control of a biological nutrient removal (BNR) activated sludge process. Based on a previously validated distributed parameter model of the BNR activated sludge process, we present robust multivariable controller designs for the process, involving loop shaping of plant model, robust stability and performance analyses. Results from three design case studies showed that a multivariable controller with stability margins of 0.163, 0.492 and 1.062 measured by the normalised coprime factor, multiplicative and additive uncertainties respectively give the best results for meeting performance robustness specifications. The controller robustly stabilises effluent nutrients in the presence of uncertainties with the behaviour of phosphorus accumulating organisms as well as to effectively attenuate major disturbances introduced as step changes. This study also shows that, performance of the multivariable robust controller is superior to multi-loops SISO PI controllers for regulating the BNR activated sludge process in terms of robust stability and performance and controlling the process using inlet feed flowrate is infeasible. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Controllers for feedback substitution schemes demonstrate a trade-off between noise power gain and normalized response time. Using as an example the design of a controller for a radiometric transduction process subjected to arbitrary noise power gain and robustness constraints, a Pareto-front of optimal controller solutions fulfilling a range of time-domain design objectives can be derived. In this work, we consider designs using a loop shaping design procedure (LSDP). The approach uses linear matrix inequalities to specify a range of objectives and a genetic algorithm (GA) to perform a multi-objective optimization for the controller weights (MOGA). A clonal selection algorithm is used to further provide a directed search of the GA towards the Pareto front. We demonstrate that with the proposed methodology, it is possible to design higher order controllers with superior performance in terms of response time, noise power gain and robustness.
Robust controller design of a wheelchair mobile via LMI approach to SPR systems with feedback output
Resumo:
This article discusses the design of robust controller applied to Wheelchair Furniture via Linear Matrix Inequalities (LMI), to obtain Strictly Positive Real (SPR) systems. The contributions of this work were the choice of a mathematical model for wheelchair: mobile with uncertainty about the position of the center of gravity (CG), the decoupling of the kinematic and dynamical systems, linearization of the models, the headquarters building of parametric uncertainties, the proposal of the control loop and control law with a specified decay rate.
Resumo:
Mathematics Subject Classification: 26A33; 93C15, 93C55, 93B36, 93B35, 93B51; 03B42; 70Q05; 49N05
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents the design and implementation of direct power controllers for three-phase matrix converters (MC) operating as Unified Power Flow Controllers (UPFC). Theoretical principles of the decoupled linear power controllers of the MC-UPFC to minimize the cross-coupling between active and reactive power control are established. From the matrix converter based UPFC model with a modified Venturini high frequency PWM modulator, decoupled controllers for the transmission line active (P) and reactive (Q) power direct control are synthesized. Simulation results, obtained from Matlab/Simulink, are presented in order to confirm the proposed approach. Results obtained show decoupled power control, zero error tracking, and fast responses with no overshoot and no steady-state error.
Resumo:
Robustness in multi-variable control system design requires that the solution to the design problem be insensitive to perturbations in the system data. In this paper we discuss measures of robustness for generalized state-space, or descriptor, systems and describe algorithmic techniques for optimizing robustness for various applications.
Resumo:
A MATLAB GUI is presented which is used to help students learn to design controllers in the frequency domain. It complements the author’s two previous GUIs for plotting and identification of systems in the frequency domain. It also incorporates the concept used in the “electronic calculator that makes students think” to assist learning. Positive student feedback affirms that the GUI has helped their understanding.
Resumo:
A Lyapunov-based stabilizing control design method for uncertain nonlinear dynamical systems using fuzzy models is proposed. The controller is constructed using a design model of the dynamical process to be controlled. The design model is obtained from the truth model using a fuzzy modeling approach. The truth model represents a detailed description of the process dynamics. The truth model is used in a simulation experiment to evaluate the performance of the controller design. A method for generating local models that constitute the design model is proposed. Sufficient conditions for stability and stabilizability of fuzzy models using fuzzy state-feedback controllers are given. The results obtained are illustrated with a numerical example involving a four-dimensional nonlinear model of a stick balancer.
Resumo:
This paper presents the control strategies of nonlinear vehicle suspension using a magnetorheological (MR) damper. We used two different approaches for modeling and control of the mechanical and electrical parts of the suspension systems with the MR damper. First, we have formulated and resolved the control problem in order to design the linear feedback dumping force controller for a nonlinear suspension system. Then the values of the control dumping force functions were transformed into electrical control signals by the application of a fuzzy logic control method. The numerical simulations were provided in order to show the effectiveness of this method for the semi-active control of the quarter-car suspension.
Resumo:
This paper describes a mathematical study about chaotic system and about the unified approach of chaos control via fuzzy control system based in Linear Matrix Inequality to design a controller which synchronizes the transmission/reception system. This system, that was based in Lorenz chaotic circuit, can be used for transmit signals in secure way.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper addresses robust model-order reduction of a high dimensional nonlinear partial differential equation (PDE) model of a complex biological process. Based on a nonlinear, distributed parameter model of the same process which was validated against experimental data of an existing, pilot-scale BNR activated sludge plant, we developed a state-space model with 154 state variables in this work. A general algorithm for robustly reducing the nonlinear PDE model is presented and based on an investigation of five state-of-the-art model-order reduction techniques, we are able to reduce the original model to a model with only 30 states without incurring pronounced modelling errors. The Singular perturbation approximation balanced truncating technique is found to give the lowest modelling errors in low frequency ranges and hence is deemed most suitable for controller design and other real-time applications. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Active queue management (AQM) policies are those policies of router queue management that allow for the detection of network congestion, the notification of such occurrences to the hosts on the network borders, and the adoption of a suitable control policy. This paper proposes the adoption of a fuzzy proportional integral (FPI) controller as an active queue manager for Internet routers. The analytical design of the proposed FPI controller is carried out in analogy with a proportional integral (PI) controller, which recently has been proposed for AQM. A genetic algorithm is proposed for tuning of the FPI controller parameters with respect to optimal disturbance rejection. In the paper the FPI controller design metodology is described and the results of the comparison with random early detection (RED), tail drop, and PI controller are presented.
Resumo:
In this study a minimum variance neuro self-tuning proportional-integral-derivative (PID) controller is designed for complex multiple input-multiple output (MIMO) dynamic systems. An approximation model is constructed, which consists of two functional blocks. The first block uses a linear submodel to approximate dominant system dynamics around a selected number of operating points. The second block is used as an error agent, implemented by a neural network, to accommodate the inaccuracy possibly introduced by the linear submodel approximation, various complexities/uncertainties, and complicated coupling effects frequently exhibited in non-linear MIMO dynamic systems. With the proposed model structure, controller design of an MIMO plant with n inputs and n outputs could be, for example, decomposed into n independent single input-single output (SISO) subsystem designs. The effectiveness of the controller design procedure is initially verified through simulations of industrial examples.