A robust controller design method for feedback substitution schemes using genetic algorithms


Autoria(s): Trujillo, Mirsha M.; Hadjiloucas, Sillas; Becerra, Victor
Data(s)

2011

Resumo

Controllers for feedback substitution schemes demonstrate a trade-off between noise power gain and normalized response time. Using as an example the design of a controller for a radiometric transduction process subjected to arbitrary noise power gain and robustness constraints, a Pareto-front of optimal controller solutions fulfilling a range of time-domain design objectives can be derived. In this work, we consider designs using a loop shaping design procedure (LSDP). The approach uses linear matrix inequalities to specify a range of objectives and a genetic algorithm (GA) to perform a multi-objective optimization for the controller weights (MOGA). A clonal selection algorithm is used to further provide a directed search of the GA towards the Pareto front. We demonstrate that with the proposed methodology, it is possible to design higher order controllers with superior performance in terms of response time, noise power gain and robustness.

Formato

text

Identificador

http://centaur.reading.ac.uk/27064/1/1742-6596_307_1_012040.pdf

Trujillo, M. M., Hadjiloucas, S. <http://centaur.reading.ac.uk/view/creators/90000299.html> and Becerra, V. <http://centaur.reading.ac.uk/view/creators/90000300.html> (2011) A robust controller design method for feedback substitution schemes using genetic algorithms. Journal of Physics: Conference Series, 307 (1). 012040. ISSN 1742-6596 doi: 10.1088/1742-6596/307/1/012040 <http://dx.doi.org/10.1088/1742-6596/307/1/012040>

Idioma(s)

en

Publicador

IOP Publishing

Relação

http://centaur.reading.ac.uk/27064/

creatorInternal Hadjiloucas, Sillas

creatorInternal Becerra, Victor

10.1088/1742-6596/307/1/012040

Tipo

Article

PeerReviewed