25 resultados para RoboCup
Resumo:
This work addresses the problem of traction control in mobile wheeled robots in the particular case of the RoboCup Middle Size League (MSL). The slip control problem is formulated using simple friction models for ISePorto Team robots with a differential wheel configuration. Traction was also characterized experimentally in the MSL scenario for relevant game events. This work proposes a hierarchical traction control architecture which relies in local slip detection and control at each wheel, with relevant information being relayed to a higher level responsible for global robot motion control. A dedicated one axis control embedded hardware subsystem allowing complex local control, high frequency current sensing and odometric information procession was developed. This local axis control board is integrated in a distributed system using CAN bus communications. The slipping observer was implemented in the axis control hardware nodes integrated in the ISePorto robots and was used to control and detect loss of for traction. %and to detect the ball in the kicking device. An external vision system was used to perform a qualitative analysis of the slip detection and observer performance results are presented.
Resumo:
Proceedings of the 10th Mediterranean Conference on Control and Automation - MED2002 Lisbon, Portugal, July 9-12, 2002
Resumo:
RoboCup was created in 1996 by a group of Japanese, American, and European Artificial Intelligence and Robotics researchers with a formidable, visionary long-term challenge: “By 2050 a team of robot soccer players will beat the human World Cup champion team.” At that time, in the mid 90s, when there were very few effective mobile robots and the Honda P2 humanoid robot was presented to a stunning public for the first time also in 1996, the RoboCup challenge, set as an adversarial game between teams of autonomous robots, was fascinating and exciting. RoboCup enthusiastically and concretely introduced three robot soccer leagues, namely “Simulation,” “Small-Size,” and “Middle-Size,” as we explain below, and organized its first competitions at IJCAI’97 in Nagoya with a surprising number of 100 participants [RC97]. It was the beginning of what became a continously growing research community. RoboCup established itself as a structured organization (the RoboCup Federation www.RoboCup.org). RoboCup fosters annual competition events, where the scientific challenges faced by the researchers are addressed in a setting that is attractive also to the general public. and the RoboCup events are the ones most popular and attended in the research fields of AI and Robotics.RoboCup further includes a technical symposium with contributions relevant to the RoboCup competitions and beyond to the general AI and robotics.
Resumo:
[Excerpt] The 11th RoboCup International Symposium was held during July 9–10, 2007 at the Fox Theatre in Atlanta, GA, immediately after the 2007 Soccer, Rescue and Junior Competitions. The RoboCup community has observed an increasing interest from other communities over the past few years, e.g., the robotics community.RoboCupisseenasasignificantapproachtotheevaluationofnewlydeveloped methods to many difficult problems in robotics. Atlanta was also the location of a RoboCup@Space demonstration, which reflected the role of AI and robotics in space exploration. Prior to the symposium, space agencies had expressed an interest in cooperating with RoboCup. A first step in this direction was a successful demonstration at RoboCup 2007, which was accompanied with aninvitedtalkgivenbyaleadingscientistfromtheJapanAerospaceExploration Agency JAXA. [...]
Resumo:
The Robocup Rescue Simulation System (RCRSS) is a dynamic system of multi-agent interaction, simulating a large-scale urban disaster scenario. Teams of rescue agents are charged with the tasks of minimizing civilian casualties and infrastructure damage while competing against limitations on time, communication, and awareness. This thesis provides the first known attempt of applying Genetic Programming (GP) to the development of behaviours necessary to perform well in the RCRSS. Specifically, this thesis studies the suitability of GP to evolve the operational behaviours required of each type of rescue agent in the RCRSS. The system developed is evaluated in terms of the consistency with which expected solutions are the target of convergence as well as by comparison to previous competition results. The results indicate that GP is capable of converging to some forms of expected behaviour, but that additional evolution in strategizing behaviours must be performed in order to become competitive. An enhancement to the standard GP algorithm is proposed which is shown to simplify the initial search space allowing evolution to occur much quicker. In addition, two forms of population are employed and compared in terms of their apparent effects on the evolution of control structures for intelligent rescue agents. The first is a single population in which each individual is comprised of three distinct trees for the respective control of three types of agents, the second is a set of three co-evolving subpopulations one for each type of agent. Multiple populations of cooperating individuals appear to achieve higher proficiencies in training, but testing on unseen instances raises the issue of overfitting.
Resumo:
in RoboCup 2007: Robot Soccer World Cup XI
Resumo:
International Conference on Advanced Robotics, Coimbra, Portugal, Julho 2003
Resumo:
Proceedings of the Scientific Meeting of the Portuguese Robotics Open 2004
Resumo:
The trend to have more cooperative play and the increase of game dynamics in Robocup MSL League motivates the improvement of skills for ball passing and reception. Currently the majority of the MSL teams uses ball handling devices with rollers to have more precise kicks but limiting the capability to kick a moving ball without stopping it and grabbing it. This paper addresses the problem to receive and kick a fast moving ball without having to grab it with a roller based ball handling device. Here, the main difficulty is the high latency and low rate of the measurements of the ball sensing systems, based in vision or laser scanner sensors.Our robots use a geared leg coupled to a motor that acts simultaneously as the kicking device and low level ball sensor. This paper proposes a new method to improve the capability for ball sensing in the kicker, by combining high rate measurements from the torque and energy in the motor and angular position of the kicker leg. The developed method endows the kicker device with an effective ball detection ability, validated in several game situations like in an interception to a fast pass or when chasing the ball where the relative speed from robot to ball is low. This can be used to optimize the kick instant or by the embedded kicker control system to absorb the ball energy.
Resumo:
The robotics community is concerned with the ability to infer and compare the results from researchers in areas such as vision perception and multi-robot cooperative behavior. To accomplish that task, this paper proposes a real-time indoor visual ground truth system capable of providing accuracy with at least more magnitude than the precision of the algorithm to be evaluated. A multi-camera architecture is proposed under the ROS (Robot Operating System) framework to estimate the 3D position of objects and the implementation and results were contextualized to the Robocup Middle Size League scenario.
Resumo:
The paper presents a multi-robot cooperative framework to estimate the 3D position of dynamic targets, based on bearing-only vision measurements. The uncertainty of the observation provided by each robot equipped with a bearing-only vision system is effectively addressed for cooperative triangulation purposes by weighing the contribution of each monocular bearing ray in a probabilistic manner. The envisioned framework is evaluated in an outdoor scenario with a team of heterogeneous robots composed of an Unmanned Ground and Aerial Vehicle.
Resumo:
La coordinació i assignació de tasques en entorns distribuïts ha estat un punt important de la recerca en els últims anys i aquests temes són el cor dels sistemes multi-agent. Els agents en aquests sistemes necessiten cooperar i considerar els altres agents en les seves accions i decisions. A més a més, els agents han de coordinar-se ells mateixos per complir tasques complexes que necessiten més d'un agent per ser complerta. Aquestes tasques poden ser tan complexes que els agents poden no saber la ubicació de les tasques o el temps que resta abans de que les tasques quedin obsoletes. Els agents poden necessitar utilitzar la comunicació amb l'objectiu de conèixer la tasca en l'entorn, en cas contrari, poden perdre molt de temps per trobar la tasca dins de l'escenari. De forma similar, el procés de presa de decisions distribuït pot ser encara més complexa si l'entorn és dinàmic, amb incertesa i en temps real. En aquesta dissertació, considerem entorns amb sistemes multi-agent amb restriccions i cooperatius (dinàmics, amb incertesa i en temps real). En aquest sentit es proposen dues aproximacions que permeten la coordinació dels agents. La primera és un mecanisme semi-centralitzat basat en tècniques de subhastes combinatòries i la idea principal es minimitzar el cost de les tasques assignades des de l'agent central cap als equips d'agents. Aquest algoritme té en compte les preferències dels agents sobre les tasques. Aquestes preferències estan incloses en el bid enviat per l'agent. La segona és un aproximació d'scheduling totalment descentralitzat. Això permet als agents assignar les seves tasques tenint en compte les preferències temporals sobre les tasques dels agents. En aquest cas, el rendiment del sistema no només depèn de la maximització o del criteri d'optimització, sinó que també depèn de la capacitat dels agents per adaptar les seves assignacions eficientment. Addicionalment, en un entorn dinàmic, els errors d'execució poden succeir a qualsevol pla degut a la incertesa i error de accions individuals. A més, una part indispensable d'un sistema de planificació és la capacitat de re-planificar. Aquesta dissertació també proveeix una aproximació amb re-planificació amb l'objectiu de permetre als agent re-coordinar els seus plans quan els problemes en l'entorn no permeti la execució del pla. Totes aquestes aproximacions s'han portat a terme per permetre als agents assignar i coordinar de forma eficient totes les tasques complexes en un entorn multi-agent cooperatiu, dinàmic i amb incertesa. Totes aquestes aproximacions han demostrat la seva eficiència en experiments duts a terme en l'entorn de simulació RoboCup Rescue.
Resumo:
O interesse de pesquisa da comunidade de Inteligência Artificial em Sistemas Multiagentes tem gerado o crescimento da utilização de técnicas de agentes nas mais diversas áreas da ciência da computação. Isso ocorre, principalmente, devido à variedade de aplicações em que esses sistemas podem ser usados, como por exemplo: jogos de computadores, interfaces adaptativas, simulação e controle de processos industriais. The Robot World Cup Initiative (RoboCup) é uma tentativa de estimular a área de Inteligência Artificial e, principalmente de Sistemas Multiagentes, por promover um problema padrão, jogar futebol, onde uma ampla cadeia de tecnologias podem ser integradas, examinadas e comparadas. A utilização do ambiente da RoboCup para a simulação de uma partida de futebol (simulador Soccerserver) permite a avaliação de diferentes técnicas de Sistemas Multiagentes (planejamento de estratégias, conhecimento em tempo real, colaboração de agentes, princípios de agentes autônomos, entre outros) e estimula as pesquisas, investigações e testes que possibilitem a construção gradativa de agentes avançados. O presente trabalho tem por objetivo o desenvolvimento de um time de futebol para o simulador Soccerserver. A idéia principal é desenvolver agentes jogadores que demonstrem um nível considerável de competência para a realização de suas tarefas, como percepção, ação, cooperação, estratégias pré-definidas, decisão e previsão. Inicialmente, apresenta-se uma visão geral sobre Inteligência Artificial Distribuída e sobre o simulador Soccerserver, pré-requisitos para o restante do trabalho. A seguir, é realizado um estudo sobre algumas arquiteturas de agentes (clientes) do Soccerserver. A arquitetura proposta na dissertação, suas principais características e a sua materialização em um protótipo desenvolvido correspondem à parte principal do trabalho. Finalmente são apresentados os testes realizados e as conclusões do trabalho.
Resumo:
A utilização da abordagem de agentes, nas mais diversas áreas de aplicações, mostra o interesse nas pesquisas sobre sistemas multiagentes. Este interesse surgiu da necessidade de aplicar novas técnicas e conceitos para a construção de sistemas e para auxiliar no seu desenvolvimento. Neste sentido, os agentes satisfazem às expectativas, não sendo apenas utilizados para a solução de problemas acadêmicos, mas também de sistemas reais. Na ciência da computação, a inteligência artificial distribuída está profundamente relacionada com o problema de coordenação. O objetivo é projetar mecanismos de coordenação para grupos de agentes artificiais. Várias características envolvem a atuação de agentes em um ambiente multiagente, como os mecanismos de cooperação, coordenação, comunicação, organização, entre outros. Este trabalho apresenta um estudo sobre coordenação multiagente, enfatizando a sua avaliação. O objetivo é apresentar uma proposta de avaliação, com um conjunto de critérios definidos para serem aplicados em modelos de coordenação. Inicialmente, é apresentado um estudo sobre coordenação de agentes. A seguir, são abordados vários modelos de coordenação encontrados na literatura da área. A parte principal do trabalho corresponde à definição de critérios para avaliação da coordenação, a serem utilizados em duas etapas: uma análise do problema, com vistas à escolha de um modelo de coordenação a ser empregado em uma determinada aplicação, e uma avaliação a posteriori, baseada nos critérios propostos para avaliar o comportamento de um sistema coordenado após o uso de um modelo de coordenação específico.Para exemplificar a aplicação dos critérios, dois estudos de caso são apresentados e foram utilizados para os experimentos: um referente ao domínio da Robocup, utilizando o Time UFRGS e, outro, referente ao gerenciamento de agendas distribuídas.
Resumo:
One of the most important characteristics of intelligent activity is the ability to change behaviour according to many forms of feedback. Through learning an agent can interact with its environment to improve its performance over time. However, most of the techniques known that involves learning are time expensive, i.e., once the agent is supposed to learn over time by experimentation, the task has to be executed many times. Hence, high fidelity simulators can save a lot of time. In this context, this paper describes the framework designed to allow a team of real RoboNova-I humanoids robots to be simulated under USARSim environment. Details about the complete process of modeling and programming the robot are given, as well as the learning methodology proposed to improve robot's performance. Due to the use of a high fidelity model, the learning algorithms can be widely explored in simulation before adapted to real robots. © 2008 Springer-Verlag Berlin Heidelberg.