947 resultados para Riesz, Fractional Diffusion, Equation, Explicit Difference, Scheme, Stability, Convergence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove global existence and uniqueness of strong solutions to the logarithmic porous medium type equation with fractional diffusion ?tu + (?)1/2 log(1 + u) = 0, posed for x ? R, with nonnegative initial data in some function space of LlogL type. The solutions are shown to become bounded and C? smooth in (x, t) for all positive times. We also reformulate this equation as a transport equation with nonlocal velocity and critical viscosity, a topic of current relevance. Interesting functional inequalities are involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematical Subject Classification 2010: 35R11, 42A38, 26A33, 33E12.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 26A33, 33E12, 34K29, 34L15, 35K57, 35R30

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we perform a comparison of two different numerical schemes for the solution of the time-fractional diffusion equation with variable diffusion coefficient and a nonlinear source term. The two methods are the implicit numerical scheme presented in [M.L. Morgado, M. Rebelo, Numerical approximation of distributed order reaction- diffusion equations, Journal of Computational and Applied Mathematics 275 (2015) 216-227] that is adapted to our type of equation, and a colocation method where Chebyshev polynomials are used to reduce the fractional differential equation to a system of ordinary differential equations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we develop a new mathematical model for the Pennes’ bioheat equation assuming a fractional time derivative of single order. A numerical method for the solu- tion of such equations is proposed, and, the suitability of the new model for modelling real physical problems is studied and discussed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 47B06, 47G30, 60G50, 60G52, 60G60.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 26A33 (primary), 35S15

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The local fractional Burgers’ equation (LFBE) is investigated from the point of view of local fractional conservation laws envisaging a nonlinear local fractional transport equation with a linear non-differentiable diffusion term. The local fractional derivative transformations and the LFBE conversion to a linear local fractional diffusion equation are analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 26A33; Secondary 35S10, 86A05

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 26A33, 33E12, 35B45, 35B50, 35K99, 45K05 Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th anniversary

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classi¯cation 2010: 26A33, 65D25, 65M06, 65Z05.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this paper is to present an approximation scheme for a reaction-diffusion equation with finite delay, which has been used as a model to study the evolution of a population with density distribution u, in such a way that the resulting finite dimensional ordinary differential system contains the same asymptotic dynamics as the reaction-diffusion equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En el presente artículo se muestran las ventajas de la programación en paralelo resolviendo numéricamente la ecuación del calor en dos dimensiones a través del método de diferencias finitas explícito centrado en el espacio FTCS. De las conclusiones de este trabajo se pone de manifiesto la importancia de la programación en paralelo para tratar problemas grandes, en los que se requiere un elevado número de cálculos, para los cuales la programación secuencial resulta impracticable por el elevado tiempo de ejecución. En la primera sección se describe brevemente los conceptos básicos de programación en paralelo. Seguidamente se resume el método de diferencias finitas explícito centrado en el espacio FTCS aplicado a la ecuación parabólica del calor. Seguidamente se describe el problema de condiciones de contorno y valores iniciales específico al que se va a aplicar el método de diferencias finitas FTCS, proporcionando pseudocódigos de una implementación secuencial y dos implementaciones en paralelo. Finalmente tras la discusión de los resultados se presentan algunas conclusiones. In this paper the advantages of parallel computing are shown by solving the heat conduction equation in two dimensions with the forward in time central in space (FTCS) finite difference method. Two different levels of parallelization are consider and compared with traditional serial procedures. We show in this work the importance of parallel computing when dealing with large problems that are impractical or impossible to solve them with a serial computing procedure. In the first section a summary of parallel computing approach is presented. Subsequently, the forward in time central in space (FTCS) finite difference method for the heat conduction equation is outline, describing how the heat flow equation is derived in two dimensions and the particularities of the finite difference numerical technique considered. Then, a specific initial boundary value problem is solved by the FTCS finite difference method and serial and parallel pseudo codes are provided. Finally after results are discussed some conclusions are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Prepared for American Mathematical Society Meeting, Los Angeles, California, Nov. 27, 1954."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 45K05, 60J60, 60G50, 65N06, 80-99.