924 resultados para Ribozyme VS de Neurospora
Resumo:
Nous étudions le ribozyme VS de Neurospora, en tant que système modèle, pour augmenter nos connaissances sur la relation entre la structure et la fonction chez les ARNs, ainsi que pour mieux comprendre le mécanisme de clivage de ce ribozyme. Il a été proposé précédemment que la boucle interne A730 dans la tige-boucle VI (SLVI) contient le site actif du ribozyme et lie un ou plusieurs ions métalliques qui pourraient participer au mécanisme réactionnel. Nous avons déterminé par spectroscopie RMN la structure de la tige-boucle SLVI contenant la boucle A730 afin d’éclaircir ce mécanisme. La structure obtenue est en accord avec les études biochimiques antérieures et présente un ou plusieurs sites de liaison au magnésium associé à la boucle interne. Suite à des études de cinétique et de mutagenèse, il a été proposé qu’une adénine localisée dans le site actif, A756, participe à la catalyse par acide/base générale. Des études de pH effectuées précédemment ont identifié un pKa catalytique (5.2-5.8) qui correspond probablement à l’équilibre de protonation du A756. À l’aide de méthodes utilisant le carbone-13, nous avons identifié un pKa modifié appartenant au A756, ce qui supporte le rôle de ce résidu dans la catalyse par acide/base générale. Les études structurales présentées ici aident donc à augmenter notre compréhension du mécanisme de clivage chez le ribozyme VS.
Resumo:
Les interactions ARN/ARN de type kissing-loop sont des éléments de structure tertiaire qui jouent souvent des rôles clés chez les ARN, tant au niveau fonctionnel que structural. En effet, ce type d’interaction est crucial pour plusieurs processus dépendant des ARN, notamment pour l’initiation de la traduction, la reconnaissance des ARN antisens et la dimérisation de génome rétroviral. Les interactions kissing-loop sont également importantes pour le repliement des ARN, puisqu’elles permettent d’établir des contacts à longue distance entre différents ARN ou encore entre les domaines éloignés d’un même ARN. Ce type d’interaction stabilise aussi les structures complexes des ARN fonctionnels tels que les ARNt, les riborégulateurs et les ribozymes. Comme d’autres ARN fonctionnels, le ribozyme VS de Neurospora contient une interaction kissing-loop importante. Celle-ci est impliquée dans la reconnaissance du substrat et se forme entre la tige-boucle I (stem-loop I, SLI) du substrat et la tige-boucle V (stem-loop V, SLV) du domaine catalytique. Des études biochimiques ont démontré que l’interaction kissing-loop I/V, dépendante du magnésium, implique trois paires de bases Watson-Crick (W-C). De plus, cette interaction est associée à un réarrangement de la structure du substrat, le faisant passer d’une conformation inactive dite unshifted à une conformation active dite shifted. Les travaux présentés dans cette thèse consistent en une caractérisation structurale et thermodynamique de l’interaction kissing-loop I/V du ribozyme VS, laquelle est formée de fragments d’ARN représentant les tige-boucles I et V dérivées du ribozyme VS (SLI et SLV). Cette caractérisation a été réalisée principalement par spectroscopie de résonance magnétique nucléaire (RMN) et par titrage calorimétrique isotherme (isothermal titration calorimetry, ITC) en utilisant différents complexes SLI/SLV dans lesquels l’ARN SLV est commun à tous les complexes, alors que différentes variations de l’ARN SLI ont été utilisées, soit en conformation shiftable ou preshifted. Les données d’ITC ont permis de démontrer qu’en présence d’une concentration saturante de magnésium, l’affinité d’un substrat SLI preshifted pour SLV est extrêmement élevée, rendant cette interaction plus stable que ce qui est prédit pour un duplexe d’ARN équivalent. De plus, l’étude effectuée par ITC montre que des ARN SLI preshifted présentent une meilleure affinité pour SLV que des ARN SLI shiftable, ce qui a permis de calculer le coût énergétique associé au réarrangement de structure du substrat. En plus de confirmer la formation des trois paires de bases W-C prédites à la jonction I/V, les études de RMN ont permis d’obtenir une preuve structurale directe du réarrangement structural des substrats SLI shiftable en présence de magnésium et de l’ARN SLV. La structure RMN d’un complexe SLI/SLV de grande affinité démontre que les boucles terminales de SLI et SLV forment chacune un motif U-turn, ce qui facilite l’appariement W-C intermoléculaire. Plusieurs autres interactions ont été définies à l’interface I/V, notamment des triplets de bases, ainsi que des empilements de bases. Ces interactions contribuent d’ailleurs à la création d’une structure présentant un empilement continu, c’est-à-dire qui se propage du centre de l’interaction jusqu’aux bouts des tiges de SLI et SLV. Ces études de RMN permettent donc de mieux comprendre la stabilité exceptionnelle de l’interaction kissing-loop I/V au niveau structural et mènent à l’élaboration d’un modèle cinétique de l’activation du substrat par le ribozyme VS. En considérant l’ensemble des données d’ITC et de RMN, l’étonnante stabilité de l’interaction I/V s’explique probablement par une combinaison de facteurs, dont les motifs U-turn, la présence d’un nucléotide exclu de la boucle de SLV (U700), la liaison de cations magnésium et l’empilement de bases continu à la jonction I/V.
Resumo:
Le ribozyme VS de Neurospora catalyse des réactions de clivage et de ligation d’un lien phosphodiester spécifique essentielles à son cycle de réplication. Il est formé de six régions hélicales (I à VI), qui se divisent en deux domaines, soit le substrat (SLI) et le domaine catalytique (tiges II à VI). Ce dernier comprend deux jonctions à trois voies qui permettent de reconnaître le substrat en tige-boucle de façon spécifique. Ce mode de reconnaissance unique pourrait être exploité pour cibler des ARN repliés pour diverses applications. Bien que le ribozyme VS ait été caractérisé biochimiquement de façon exhaustive, aucune structure à haute résolution du ribozyme complet n’a encore été publiée, ce qui limite la compréhension des mécanismes inhérents à son fonctionnement. Précédemment, une approche de divide-and-conquer a été initiée afin d’étudier la structure des sous-domaines importants du ribozyme VS par spectroscopie de résonance magnétique nucléaire (RMN) mais doit être complétée. Dans le cadre de cette thèse, les structures de la boucle A730 et des jonctions III-IV-V et II-III-VI ont été déterminées par spectroscopie RMN hétéronucléaire. De plus, une approche de spectroscopie RMN a été développée pour la localisation des ions divalents, tandis que diverses approches de marquage isotopique ont été implémentées pour l’étude d’ARN de plus grandes tailles. Les structures RMN de la boucle A730 et des deux jonctions à trois voies révèlent que ces sous-domaines sont bien définis, qu’ils sont formés de plusieurs éléments structuraux récurrents (U-turn, S-turn, triplets de bases et empilement coaxial) et qu’ils contiennent plusieurs sites de liaison de métaux. En outre, un modèle du site actif du ribozyme VS a été construit sur la base des similarités identifiées entre les sites actifs des ribozymes VS et hairpin. Dans l’ensemble, ces études contribuent de façon significative à la compréhension de l’architecture globale du ribozyme VS. De plus, elles permettront de construire un modèle à haute résolution du ribozyme VS tout en favorisant de futures études d’ingénierie.
Resumo:
Les ribozymes sont des ARN catalytiques fréquemment exploités pour le développement d’outils biochimiques et d’agents thérapeutiques. Ils sont particulièrement intéressants pour effectuer l’inactivation de gènes, en permettant la dégradation d’ARNm ou d’ARN viraux associés à des maladies. Les ribozymes les plus utilisés en ce moment pour le développement d’agents thérapeutiques sont les ribozymes hammerhead et hairpin, qui permettent la reconnaissance spécifique d’ARN simple brin par la formation de structures secondaires stables. In vivo, la majorité des ARN adoptent des structures secondaires et tertiaires complexes et les régions simples brins sont parfois difficiles d’accès. Il serait intéressant de pouvoir cibler des ARN repliés et un motif d’ARN intéressant à cibler est la tige-boucle d’ARN qui peut être importante dans le repliement global des ARN et pour accomplir des fonctions biologiques. Le ribozyme VS de Neurospora fait la reconnaissance de son substrat replié en tigeboucle de façon spécifique par une interaction kissing-loop, mais il n’a jamais été exploité pour faire la reconnaissance d’un ARN cible très différent de son substrat naturel. Le but des travaux présentés dans cette thèse est de déterminer si le ribozyme VS possède l’adaptabilité nécessaire pour l’ingénierie de ribozymes qui clivent des ARN cibles différents du substrat naturel. Dans le cadre de cette thèse, le ribozyme VS a été modifié pour l’adapter à différents substrats et des études de cinétiques ont été réalisées pour évaluer l’impact de ces modifications sur l’activité de clivage du ribozyme. Dans un premier temps, le ribozyme a été modifié pour faire la reconnaissance et le clivage de substrats possédant différentes longueurs de tiges Ib. Le ribozyme a été adapté avec succès à ces substrats de différentes longueurs de tige Ib, avec une activité qui est similaire à celle du ribozyme avec un substrat sans modification. Dans un deuxième temps, c’est l’interaction kissing-loop I/V du ribozyme qui a été substituée de façon rationnelle, dans le but de savoir si un ribozyme VS mutant peut reconnaitre et cliver un substrat ayant une boucle différente de celle de son substrat naturel. L’interaction kissing-loop I/V a été substituée pour les interactions kissing-loop TAR/TAR* de l’ARN du VIH-1 et L22/L88 de l’ARN 23S de Deinococcus radiodurans. La réaction de iii clivage des ribozymes comportant ces nouvelles interactions kissing-loop est toujours observée, mais avec une activité diminuée. Finalement, la sélection in vitro (SELEX) de ribozymes a été effectuée pour permettre un clivage plus efficace d’un substrat mutant avec une nouvelle boucle. Le SELEX a permis la sélection d’un ribozyme qui clive un substrat avec une boucle terminale mutée pour celle de l’ARN TAR du VIH-1 et cela avec une activité de clivage très efficace. L’ensemble de ces études démontre que le ribozyme VS peut être modifié de diverses façons pour la reconnaissance spécifique de différents substrats, tout en conservant une bonne activité de clivage. Ces résultats montrent le grand potentiel d’ingénierie du ribozyme VS et sont prometteurs pour la poursuite d’études d’ingénierie du ribozyme VS, en vue du clivage d’ARN cibles repliés en tige-boucle complètement différents du substrat naturel du ribozyme VS.
Resumo:
Les ribozymes sont des ARN catalytiques fréquemment exploités pour le développement d’outils biochimiques et d’agents thérapeutiques. Ils sont particulièrement intéressants pour effectuer l’inactivation de gènes, en permettant la dégradation d’ARNm ou d’ARN viraux associés à des maladies. Les ribozymes les plus utilisés en ce moment pour le développement d’agents thérapeutiques sont les ribozymes hammerhead et hairpin, qui permettent la reconnaissance spécifique d’ARN simple brin par la formation de structures secondaires stables. In vivo, la majorité des ARN adoptent des structures secondaires et tertiaires complexes et les régions simples brins sont parfois difficiles d’accès. Il serait intéressant de pouvoir cibler des ARN repliés et un motif d’ARN intéressant à cibler est la tige-boucle d’ARN qui peut être importante dans le repliement global des ARN et pour accomplir des fonctions biologiques. Le ribozyme VS de Neurospora fait la reconnaissance de son substrat replié en tigeboucle de façon spécifique par une interaction kissing-loop, mais il n’a jamais été exploité pour faire la reconnaissance d’un ARN cible très différent de son substrat naturel. Le but des travaux présentés dans cette thèse est de déterminer si le ribozyme VS possède l’adaptabilité nécessaire pour l’ingénierie de ribozymes qui clivent des ARN cibles différents du substrat naturel. Dans le cadre de cette thèse, le ribozyme VS a été modifié pour l’adapter à différents substrats et des études de cinétiques ont été réalisées pour évaluer l’impact de ces modifications sur l’activité de clivage du ribozyme. Dans un premier temps, le ribozyme a été modifié pour faire la reconnaissance et le clivage de substrats possédant différentes longueurs de tiges Ib. Le ribozyme a été adapté avec succès à ces substrats de différentes longueurs de tige Ib, avec une activité qui est similaire à celle du ribozyme avec un substrat sans modification. Dans un deuxième temps, c’est l’interaction kissing-loop I/V du ribozyme qui a été substituée de façon rationnelle, dans le but de savoir si un ribozyme VS mutant peut reconnaitre et cliver un substrat ayant une boucle différente de celle de son substrat naturel. L’interaction kissing-loop I/V a été substituée pour les interactions kissing-loop TAR/TAR* de l’ARN du VIH-1 et L22/L88 de l’ARN 23S de Deinococcus radiodurans. La réaction de iii clivage des ribozymes comportant ces nouvelles interactions kissing-loop est toujours observée, mais avec une activité diminuée. Finalement, la sélection in vitro (SELEX) de ribozymes a été effectuée pour permettre un clivage plus efficace d’un substrat mutant avec une nouvelle boucle. Le SELEX a permis la sélection d’un ribozyme qui clive un substrat avec une boucle terminale mutée pour celle de l’ARN TAR du VIH-1 et cela avec une activité de clivage très efficace. L’ensemble de ces études démontre que le ribozyme VS peut être modifié de diverses façons pour la reconnaissance spécifique de différents substrats, tout en conservant une bonne activité de clivage. Ces résultats montrent le grand potentiel d’ingénierie du ribozyme VS et sont prometteurs pour la poursuite d’études d’ingénierie du ribozyme VS, en vue du clivage d’ARN cibles repliés en tige-boucle complètement différents du substrat naturel du ribozyme VS.
Resumo:
Kissing interactions in RNA are formed when bases between two hairpin loops pair. Intra- and intermolecular kissing interactions are important in forming the tertiary or quaternary structure of many RNAs. Self-cleavage of the wild-type Varkud satellite (VS) ribozyme requires a kissing interaction between the hairpin loops of stem-loops I and V. In addition, self-cleavage requires a rearrangement of several base pairs at the base of stem I. We show that the kissing interaction is necessary for the secondary structure rearrangement of wild-type stem-loop I. Surprisingly, isolated stem-loop V in the absence of the rest of the ribozyme is sufficient to rearrange the secondary structure of isolated stem-loop I. In contrast to kissing interactions in other RNAs that are either confined to the loops or culminate in an extended intermolecular duplex, the VS kissing interaction causes changes in intramolecular base pairs within the target stem-loop.
Resumo:
Neurospora VS RNA performs an RNA-mediated self-cleavage reaction whose products contain 2',3'-cyclic phosphate and 5'-hydroxyl termini. This reaction is similar to those of hammerhead, hairpin, and hepatitis delta virus ribozymes; however, VS RNA is not similar in sequence to these other self-cleaving motifs. Here we propose a model for the secondary structure of the self-cleaving region of VS RNA, supported by site-directed mutagenesis and chemical modification structure probing data. The secondary structure of VS RNA is distinct from those of the other naturally occurring RNA self-cleaving domains. In addition to a unique secondary structure, several Mg-dependent interactions occur during the folding of VS RNA into its active tertiary conformation.
Resumo:
Résumé La Ribonucléase P (RNase P) est une enzyme principalement reconnue pour sa participation à la maturation en 5’des ARN de transfert (ARNt). Cependant, d’autres substrats sont reconnus par l’enzyme. En général, la RNase P est composée d’une sous-unité ARN (le P-ARN, codé par le gène rnpB) qui porte le centre actif de l’enzyme et d’une ou de plusieurs sous-unités protéiques (la P-protéine). Les P-ARN chez toutes les bactéries, la majorité des archéobactéries et dans le génome nucléaire de la plupart des eucaryotes, possèdent généralement une structure secondaire très conservée qui inclut le noyau (P1-P4); l’hélice P4 constitue le site catalytique de l’enzyme et l’hélice P1 apparie les extrémités du P-ARN en stabilisant sa structure globale. Les P-ARN mitochondriaux sont souvent moins conservés et difficiles à découvrir. Dans certains cas, les seules régions de structure primaire qui restent conservées sont celles qui définissent le P4 et le P1. Pour la détection des gènes rnpB, un outil de recherche bioinformatique, basé sur la séquence et le profil de structure secondaire, a été développé dans le laboratoire. Cet outil permet le dépistage de toutes les séquences eucaryotes (nucléaires et mitochondriales) du gène avec une très grande confiance (basée sur une valeur statistique, E-value). Chez les champignons, plusieurs ascomycètes encodent un gène rnpB dans leur génome mitochondrial y compris tous les membres du genre d’Aspergillus. Cependant, chez les espèces voisines, Neurospora crassa, Podospora anserina et Sordaria macrospora, une version mitochondriale de ce gène n’existe pas. Au lieu de cela, elles contiennent deux copies nucléaires du gène, légèrement différentes en taille et en contenu nucléotidique. Mon projet a été établi dans le but d’éclaircir l’évolution de la RNase P mitochondriale (mtRNase P) chez ces trois espèces voisines d’Aspergillus. En ce qui concerne les résultats, des modèles de structures secondaires pour les transcrits de ces gènes ont été construits en se basant sur la structure consensus universelle de la sous-unité ARN de la RNase P. Pour les trois espèces, par la comparaison de ces modèles, nous avons établi que les deux copies nucléaires du gène rnpB sont assez distinctes en séquence et en structure pour pouvoir y penser à une spécialisation de fonction de la RNase P. Chez N. crassa, les deux P-ARN sont modifiés probablement par une coiffe et les extrémités 5’, 3’ sont conformes à nos modèles, ayant un P1 allongé. Encore chez N. crassa, nous avons constaté que les deux copies sont transcrites au même niveau dans le cytoplasme et que la plus petite et la plus stable d’entre elles (Nc1) se retrouve dans l’extrait matriciel mitochondrial. Lors du suivi du P-ARN dans diverses sous-fractions provenant de la matrice mitochondriale soluble, Nc1 est associée avec l’activité de la RNase P. La caractérisation du complexe protéique, isolé à partir de la fraction active sur un gel non dénaturant, révèle qu’il contient au moins 87 protéines, 73 d’entre elles ayant déjà une localisation mitochondriale connue. Comme chez la levure, les protéines de ce complexe sont impliquées dans plusieurs fonctions cellulaires comme le processing de l’ADN/ARN, le métabolisme, dans la traduction et d’autres (par exemple : la protéolyse et le repliement des protéines, ainsi que la maintenance du génome mitochondrial). Pour trois protéines, leur fonction est non déterminée.
Resumo:
The use of allograft bone is increasingly common in orthopaedic reconstruction procedures. The optimal method of preparation of allograft bone is subject of great debate. Proponents of fresh-frozen graft cite improved biological and biomechanical characteristics relative to irradiated material, whereas fear of bacterial or viral transmission warrants some to favour irradiated graft. Careful review of the literature is necessary to appreciate the influence of processing techniques on bone quality. Whereas limited clinical trials are available to govern the selection of appropriate bone graft, this review presents the argument favouring the use of fresh-frozen bone allograft as compared to irradiated bone.
Resumo:
Community awareness and the perception on the traffic noise related health impacts have increased significantly over the last decade resulting in a large volume of public inquiries flowing to Road Authorities for planning advice. Traffic noise management in the urban environment is therefore becoming a “social obligation”, essentially due to noise related health concerns. Although various aspects of urban noise pollution and mitigation have been researched independently, an integrated approach by stakeholders has not been attempted. Although the current treatment and mitigation strategies are predominantly handled by the Road Agencies, a concerted effort by all stakeholders is becoming mandatory for effective and tangible outcomes in the future. A research project is underway a RMIT University, Australia, led by the second author to consider the use of “hedonic pricing” for alternative noise amelioration treatments within the road reserve and outside the road reserve. The project aims to foster a full range noise abatement strategy encompassing source, path and noise receiver. The benefit of such a study would be to mitigate the problem where it is most effective and would defuse traditional “authority” boundaries to produce the optimum outcome. The project is conducted in collaboration with the Department of Main Roads Queensland, Australia and funded by the CRC for Construction Innovation. As part of this study, a comprehensive literature search is currently underway to investigate the advancements in community health research, related to environmental noise pollution, and the advancements in technical and engineering research in mitigating the issue. This paper presents the outcomes of this work outlining state of the art, national and international good practices and gap analysis to identify major anomalies and developments.
Resumo:
A sample of 285 Western Australian university students was used to assess the prevailing attitudes regarding potential breaches of ethical conduct on the part of business practitioners and organisations. The authors developed an ethical profile for the 2007 sample based on 14 scenarios used in the questionnaire. This profile was then compared to the results from data collected in 1997 using similar sampling and the same survey instrument. The prevailing predisposition is best viewed as centrist in nature, with a move to a more ethical stance in the last 10 years.