Caractérisation structurale et thermodynamique de la reconnaissance du substrat par le ribozyme VS de Neurospora
Contribuinte(s) |
Legault, Pascale |
---|---|
Data(s) |
07/04/2015
31/12/1969
07/04/2015
19/02/2015
01/08/2014
|
Resumo |
Les interactions ARN/ARN de type kissing-loop sont des éléments de structure tertiaire qui jouent souvent des rôles clés chez les ARN, tant au niveau fonctionnel que structural. En effet, ce type d’interaction est crucial pour plusieurs processus dépendant des ARN, notamment pour l’initiation de la traduction, la reconnaissance des ARN antisens et la dimérisation de génome rétroviral. Les interactions kissing-loop sont également importantes pour le repliement des ARN, puisqu’elles permettent d’établir des contacts à longue distance entre différents ARN ou encore entre les domaines éloignés d’un même ARN. Ce type d’interaction stabilise aussi les structures complexes des ARN fonctionnels tels que les ARNt, les riborégulateurs et les ribozymes. Comme d’autres ARN fonctionnels, le ribozyme VS de Neurospora contient une interaction kissing-loop importante. Celle-ci est impliquée dans la reconnaissance du substrat et se forme entre la tige-boucle I (stem-loop I, SLI) du substrat et la tige-boucle V (stem-loop V, SLV) du domaine catalytique. Des études biochimiques ont démontré que l’interaction kissing-loop I/V, dépendante du magnésium, implique trois paires de bases Watson-Crick (W-C). De plus, cette interaction est associée à un réarrangement de la structure du substrat, le faisant passer d’une conformation inactive dite unshifted à une conformation active dite shifted. Les travaux présentés dans cette thèse consistent en une caractérisation structurale et thermodynamique de l’interaction kissing-loop I/V du ribozyme VS, laquelle est formée de fragments d’ARN représentant les tige-boucles I et V dérivées du ribozyme VS (SLI et SLV). Cette caractérisation a été réalisée principalement par spectroscopie de résonance magnétique nucléaire (RMN) et par titrage calorimétrique isotherme (isothermal titration calorimetry, ITC) en utilisant différents complexes SLI/SLV dans lesquels l’ARN SLV est commun à tous les complexes, alors que différentes variations de l’ARN SLI ont été utilisées, soit en conformation shiftable ou preshifted. Les données d’ITC ont permis de démontrer qu’en présence d’une concentration saturante de magnésium, l’affinité d’un substrat SLI preshifted pour SLV est extrêmement élevée, rendant cette interaction plus stable que ce qui est prédit pour un duplexe d’ARN équivalent. De plus, l’étude effectuée par ITC montre que des ARN SLI preshifted présentent une meilleure affinité pour SLV que des ARN SLI shiftable, ce qui a permis de calculer le coût énergétique associé au réarrangement de structure du substrat. En plus de confirmer la formation des trois paires de bases W-C prédites à la jonction I/V, les études de RMN ont permis d’obtenir une preuve structurale directe du réarrangement structural des substrats SLI shiftable en présence de magnésium et de l’ARN SLV. La structure RMN d’un complexe SLI/SLV de grande affinité démontre que les boucles terminales de SLI et SLV forment chacune un motif U-turn, ce qui facilite l’appariement W-C intermoléculaire. Plusieurs autres interactions ont été définies à l’interface I/V, notamment des triplets de bases, ainsi que des empilements de bases. Ces interactions contribuent d’ailleurs à la création d’une structure présentant un empilement continu, c’est-à-dire qui se propage du centre de l’interaction jusqu’aux bouts des tiges de SLI et SLV. Ces études de RMN permettent donc de mieux comprendre la stabilité exceptionnelle de l’interaction kissing-loop I/V au niveau structural et mènent à l’élaboration d’un modèle cinétique de l’activation du substrat par le ribozyme VS. En considérant l’ensemble des données d’ITC et de RMN, l’étonnante stabilité de l’interaction I/V s’explique probablement par une combinaison de facteurs, dont les motifs U-turn, la présence d’un nucléotide exclu de la boucle de SLV (U700), la liaison de cations magnésium et l’empilement de bases continu à la jonction I/V. Kissing loops are tertiary structure elements that often play key roles in functional RNAs. Their formation is central to many RNA-mediated processes, such as translation initiation, antisense recognition and retroviral dimerization. Kissing loops are also involved in RNA folding as they form long-range interactions between different RNAs or remote domains within the same RNA and stabilize the complex architecture of functional RNA, such as tRNA, riboswitch aptamers and ribozymes. Like several other functional RNAs, the Neurospora VS ribozyme contains an important kissing-loop interaction. The substrate recognition by the VS ribozyme depends largely on the formation of a magnesium-dependent kissing-loop interaction between stem-loop V (SLV) of the catalytic domain and stem-loop I (SLI) that defines the substrate domain. It has been shown from biochemical studies that the I/V kissing-loop interaction involves three Watson-Crick base pairs and is associated with a structural rearrangement of the SLI substrate from an unshifted and inactive to a shifted and active conformation. Here, we present a thermodynamic and structural characterization of the VS ribozyme I/V kissing-loop interaction using isolated stem-loop fragments (SLI and SLV). Both isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR) spectroscopy studies were conducted with several SLI/SLV complexes using a common SLV, but either shiftable or preshifted SLI variants. From the ITC studies, we show that, under saturating amount of magnesium ions, the affinity of the preshifted SLI variants for SLV is remarkably high, the interaction being more stable than predicted for a comparable duplex. In addition, these ITC studies demonstrate that preshifted SLI variants have higher affinity for SLV than shiftable SLI variants, and these results allow us to evaluate the energetic cost of the conformational shift in SLI. From the NMR studies, we confirm formation of three Watson-Crick base pairs at the kissing-loop junction and provide direct evidence on the structural rearrangement of shiftable SLI variants in the presence of magnesium and SLV. The NMR structure of a high-affinity SLI/SLV complex demonstrates that both the SLI and SLV loops adopt U-turn structures, which facilitate intermolecular Watson-Crick base pairing. Several other interactions at the I/V interface, including base triples and base stacking help create a continuously stacked structure. These NMR studies provide a structural basis for the high stability of the kissing-loop interaction and lead us to propose a kinetic model for substrate activation by the VS ribozyme. Taken together, our ITC and NMR data suggest that the remarkable stability of the I/V interaction is likely provided by a combination of several elements, especially the presence of the U-turn motif, the presence of an extruded nucleotide in SLV (U700), the binding of magnesium ions and the extensive base stacking interactions at the junction. |
Identificador | |
Idioma(s) |
fr |
Palavras-Chave | #Ribozyme VS de Neurospora #Motif U-turn #Interaction kissing-loop #Titrage calorimétrique isotherme (ITC) #Spectroscopie de résonance magnétique nucléaire (RMN) #Reconnaissance du substrat #Neurospora VS ribozyme #U-turn motif #kissing-loop interaction #isothermal titration calorimetry (ITC) #nuclear magnetic resonance spectroscopy (NMR) #Substrate recognition #Biology - Molecular / Biologie - Biologie moléculaire (UMI : 0307) |
Tipo |
Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |