913 resultados para Rhodium compounds


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In 1952, Dwyer and coworkers began testing a series of metal complexes for potential inhibition of cancer cell proliferation in animals.[l] The complexes tested were unsuitable for such studies due to their high toxicity. Therefore, no further work was done on the project. However, in 1965, Rosenberg and coworkers revisited the possibility of potential metal-based drugs. Serendipitously, they discovered that cis-diamminedichloroplatinum(lI) (cisplatin) inhibits cell division in E. coli.[2] Further studies of this and other platinum compounds revealed inhibition of tumor cell lines sarcoma 180 and leukemia LI2l0 in mice.[l] Cisplatin was approved by the Food and Drug Administration in 1970 as a chemical chemotherapeutic agent in the treatment of cancer. The drug has primarily been used in the treatment of testicular and ovarian cancers, although the powerful chemotherapeutic properties of the compound indicate use against a variety of other cancers.[3] The toxicity of this compound, however, warrants the development of other metal-based potential antitumor agents. The success of cisplatin, a transition-metal-based chemotherapeutic, opened the doors to a host of research on the antitumor effects of other transition-metal complexes. Beginning in the 1970s, researchers looked to rhodium for potential use in antitumor complexes. Dirhodium complexes with bridging equatorial ligands (Figure I) were the primary focus for this research. The overwhelming majority of these complexes were dirhodium(II) carboxylate complexes, containing two rhodium(II) centers, four equatorial ligands in a lantero formation around the metal center, and an axial ligand on either end. The family of complexes in Figure 1 will be referred to as dirhodium(II) carboxylate complexes. The dirhodium centers are each d? with a metal-metal bond between them. Although d? atoms are paramagnetic, the two unpaired electrons pair to make the complex diamagnetic. The basic formula of the dirhodium(lI) carboxylate complexes is Rh?(RCOO)?(L)? with R being methyl, ethyl, propyl, or butyl groups and L being water or the solvent in which the complex was crystalized. Of these dirbodium(II) carboxylate complexes, our research focuses on Rb la and two other similar complexes Rh2 and Rh3 (Figure 2). Rh2 is an activated form of Rhla, with four acetonitrile groups in place of two of the bidentate acetate ligands. Rh3 is similar to Rhla, with trifluoromethyl groups in place of the methyl groups on the acetate ligands.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The research performed in the framework of this Master Thesis has been directly inspired by the recent work of an organometallic research group led by Professor Maria Cristina Cassani on a topic related to the structures, dynamics and catalytic activity of N-heterocyclic carbene-amide rhodium(I) complexes1. A series of [BocNHCH2CH2ImR]X (R = Me, X = I, 1a’; R = Bz, X = Br, 1b’; R = trityl, X = Cl, 1c’) amide-functionalized imidazolium salts bearing increasingly bulky N-alkyl substituents were synthetized and characterized. Subsequently, these organic precursors were employed in the synthesis of silver(I) complexes as intermediate compounds on a way to rhodium(I) complexes [Rh(NBD)X(NHC)] (NHC = 1-(2-NHBoc-ethyl)-3-R-imidazolin-2-ylidene; X = Cl, R = Me (3a’), R = Bz (3b’), R = trityl (3c’); X = I, R = Me (4a’)). VT NMR studies of these complexes revealed a restricted rotation barriers about the metal-carbene bond. However, while the rotation barriers calculated for the complexes in which R = Me, Bz (3a’,b’ and 4a) matched the experimental values, this was not true in the trityl case 3c’, where the experimental value was very similar to that obtained for compound 3b’ and much smaller with respect to the calculated one. In addition, the energy barrier derived for 3c’ from line shape simulation showed a strong dependence on the temperature, while the barriers measured for 3a’,b’ did not show this effect. In view of these results and in order to establish the reasons for the previously found inconsistency between calculated and experimental thermodynamic data, the first objective of this master thesis was the preparation of a series of rhodium(I) complexes [Rh(NBD)X(NHC)] (NHC = 1-benzyl-3-R-imidazolin-2-ylidene; X = Cl, R = Me, Bz, trityl, tBu), containing the benzyl substituent as a chiral probe, followed by full characterization. The second objective of this work was to investigate the catalytic activity of the new rhodium compounds in the hydrosilylation of terminal alkynes for comparison purposes with the reported complexes. Another purpose of this work was to employ the prepared N-heterocyclic ligands in the synthesis of iron(II)-NHC complexes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A series of imidazolium salts of the type [BocNHCH2CH2ImR]X (Boc = t-Bu carbamates; Im = imidazole) (R = Me, X = I, 1a; R = Bn, X = Br, 1b; R = Trityl, X = Cl, 1c) and [BnImR’]X (R’ = Me, X = Br, 1d; R’ = Bn, X = Br, 1e; R’ = Trityl, X = Cl, 1g; R’ = tBu, X = Br, 1h) bearing increasingly bulky substituents were synthetized and characterized. Subsequently, these precursors were employed in the synthesis of silver(I)-N-heterocyclic (NHC) complexes as transmetallating reagents for the preparation of rhodium(I) complexes [RhX(NBD)(NHC)] (NHC = 1-(2-NHBoc-ethyl)-3-R-imidazolin-2-ylidene; X = Cl; R = Me, 4a; R = Bn, 4b; R = Trityl, 4c; X = I, R = Me, 5a; NHC = 1-Bn-3-R’-imidazolin-2-ylidene; X = Cl; R’ = Me, 4d, R’ = Bn, 4e, R’ = Trityl, 4g; R’ = tBu, 4h). VT NMR studies of these complexes revealed a restricted rotation barriers about the metal-carbene bond. While the rotation barriers calculated for the complexes in which R = Me, Bn (4a,b,d,e and 5a) matched the experimental values, this was not true for the complexes 4c,g, bearing a trityl group for which the values are much smaller than the calculated ones. Energy barriers for 4c,g, derived from a line shape simulation, showed a strong dependence on the temperature while for 4h the rotational energy barrier is stopped at room temperature. The catalytic activity of the new rhodium compounds was investigated in the hydrosilylation of terminal alkynes and in the addition of phenylboronic acid to benzaldehyde. The imidazolium salts 1d,e were also employed in the synthesis of new iron(II)-NHC complexes. Finally, during a six-months stay at the University of York a new ligand derived from Norharman was prepared and employed in palladium-mediated cross-coupling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Binuclear complexes of rhodium(I) of the type [(dien)(X)Rh(μ-N-N)Rh(X)(dien)] (dien = 1,5-cyclooctadiene or norbornadiene; N-N = pyrazine, 4,4′-bipyridine or Phenazine and X = Cl or Br) with bridging heterocycles have been isolated and their reactions with carbon monoxide, 2,2′-bipyridine and 1,10-phenanthroline investigated. The crystal structure of [(COD)(Cl)Rh(μ-pyrazine)Rh(Cl)(COD)] has been determined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis describes the synthesis and reactivity of a series of α-diazocarbonyl compounds with particular emphasis on the use of copper-bis(oxazoline)-mediated enantioselective C–H insertion reactions leading to enantioenriched cyclopentanone derivatives. Through the use of additives, the enantioselectivity achieved with the copper catalysts for the first time reaches synthetically useful levels (up to 91% ee). Chapter one provides a comprehensive overview of enantioselective C–H insertions with α-diazocarbonyl compounds from the literature. The majority of reports in this section involve rhodium-catalysed systems with limited reports to date of asymmetric C–H insertion reactions in the presence of copper catalysts. Chapter two focuses on the synthesis and C–H insertion reactions of α-diazo-β-keto sulfones leading to α-sulfonyl cyclopentanones as the major product. Detailed investigation of the impact of substrate structure (both the sulfonyl substitutent and the substituent at the site of insertion), the copper source, ligand, counterion, additive and solvent was undertaken to provide an insight into the mechanistic basis for enantiocontrol in the synthetically powerful C–H insertion process and to enable optimisation of enantiocontrol and ligand design. Perhaps the most significant outcome of this work is the enhanced enantioselection achieved through use of additives, substantially improving the synthetic utility of the asymmetric C–H insertion process. In addition to the C–H insertion reaction, mechanistically interesting competing reaction pathways involving hydride transfer are observed. Chapter three reports the extension of the catalyst-additive systems, developed for C–H insertions with α-diazo-β-keto sulfones in chapter two, to C–H insertion in analogous α-diazo-β-keto phosphonate and α-diazo-β-keto ester systems. While similar patterns were seen in terms of ligand effects, the enantiopurities achieved for these reactions were lower than those in the cyclisations with analogous α-diazo-β-keto sulfones. Extension of this methodology to cyclopropanation and oxium ylide formation/[2,3]-sigmatropic rearrangement was also explored. Chapter four contains the full experimental details and spectral characterisation of all novel compounds synthesised in this project, while details of chiral stationary phase HPLC analysis and X-ray crystallography are included in the appendix.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The primary objective of this thesis was the preparation of a series of pyridine-containing α-diazocarbonyl compounds and subsequent investigation of the reactivity of these compounds on exposure to transition metal catalysts. In particular, the reactivity of the pyridyl α-diazocarbonyls was compared to that of the analogous phenyl α-diazocarbonyl compounds to ascertain the impact of replacement of the phenyl ring with pyridine. The first chapter initially provides a brief introduction into α-diazocarbonyl chemistry, comprising a compendium of well-established and recently developed methods in the preparation of these compounds, as well as an outline of the reactivity of these versatile substrates. The substantive element of this introductory chapter comprises a detailed review focused on transition metal-catalysed transformations of heterocyclic α-diazocarbonyl compounds, highlighting the extraordinary diversity of reaction products which can be accessed. This review is undertaken to set the work of this thesis in context. The results of this research are discussed in the second and third chapters together with the associated experimental details, including spectroscopic and analytical data obtained in the synthesis of all compounds during this research. The second chapter describes the preparation of a range of novel pyridine-containing α-diazocarbonyl compounds via a number of synthetic strategies including both acylation and diazo transfer methodologies. In contrast to the phenyl analogues, the generation of the pyridine α-diazocarbonyl substrates was complicated by a number of factors including the inherent basicity of the pyridine ring, tautomerism and existence of rotamers. Rhodium- and copper-mediated transformations of the pyridine-containing α-diazocarbonyl compounds is discussed in detail displaying very different reactivity patterns to those seen with the phenyl analogues; oxidation to 2,3- diketones, 1,2-hydride shift to form enones and oxonium and sulfonium ylide formation/rearrangement are prominent in the pyridyl series, with no evidence of aromatic addition to the pyridine ring. The third chapter focuses on exploration of novel chiral rhodium(II) catalysts, developed in the Maguire team, in both intermolecular cyclopropanations and intramolecular C–H insertion reactions. In this chapter, the studies are focused on standard α-diazocarbonyl compounds without heteroaryl substituents. The most notable outcome was the achievement of high enantiopurities for intramolecular C–H insertions, which were competitive with, and even surpassed, established catalyst systems in some cases. This work has provided insight into solvent and temperature effects on yields as well as enantio- and diastereoselectivity, thereby providing guidance for future development and design of chiral rhodium carboxylate catalysts. While this is a preliminary study, the significance of the results lie in the fact that these are the first reactions to give substantial asymmetric induction with these novel rhodium carboxylates. While the majority of the α-diazocarbonyl compounds explored in this work were α-diazoketones, a number of α-diazoesters are also described. Details of chiral stationary phase HPLC analysis, single crystal analysis and 2D NMR experiments are included in the Appendix (Appendix III-V).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design and synthesis of an intensely blue rhodium(III) complex 3]+ of a new N,N-donor ligand, 8-(quinolin-8-ylamino)pyrido2,1-c]1,2,4]benzotriazin-11-ium, 2]+, which contains a planar pendant triazinium arm, is described. Structural characterization for 3]+ was carried out by using various spectroscopic techniques and single-crystal X-ray crystallography. The organometallic rhodium(III) compound shows a ligand-based reversible reduction at 0.65 V. The electrochemically reduced compound displays a single-line EPR spectrum that signifies the formation of ligand-based free radicals. Compound 3]+ shows a binding propensity to calf thymus DNA to give a Kapp value of 6.05X105 M1. The parent triazinium salt, pyrido2,1-c]1,2,4]benzotriazin-11-ium 1]+ and the ligand salt 2]+ exhibit photoinduced cleavage of DNA in UV-A light, whereas the reference Rh complex 3]+ photocleaves DNA with red light (647.1 nm). The compounds show photonuclease activities under both aerobic and anaerobic conditions. Mechanistic investigations under aerobic conditions with several inhibitors indicate the formation of hydroxyl radicals by means of a photoredox pathway. Under anaerobic conditions, it is believed that a photoinduced oxidation of DNA mechanism is operative. Compound 3]+ exhibits photocytotoxicity in HeLa cervical cancer cells to give IC50 values of (12+/-0.9) mu M in UV-A light at 365 nm and (31.4+/-1.1) mu M in the dark.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deficiencies in the mismatch repair (MMR) pathway are associated with several types of cancers, as well as resistance to commonly used chemotherapeutics. Rhodium metalloinsertors have been found to bind DNA mismatches with high affinity and specificity in vitro, and also exhibit cell-selective cytotoxicity, targeting MMR-deficient cells over MMR-proficient cells.

Here we examine the biological fate of rhodium metalloinsertors bearing dipyridylamine ancillary ligands. These complexes are shown to exhibit accelerated cellular uptake which permits the observation of various cellular responses, including disruption of the cell cycle and induction of necrosis, which occur preferentially in the MMR-deficient cell line. These cellular responses provide insight into the mechanisms underlying the selective activity of this novel class of targeted anti-cancer agents.

In addition, ten distinct metalloinsertors with varying lipophilicities are synthesized and their mismatch binding affinities and biological activities studied. While they are found to have similar binding affinities, their cell-selective antiproliferative and cytotoxic activities vary significantly. Inductively coupled plasma mass spectrometry (ICP-MS) experiments show that all of these metalloinsertors localize in the nucleus at sufficient concentrations for binding to DNA mismatches. Furthermore, metalloinsertors with high rhodium localization in the mitochondria show toxicity that is not selective for MMR-deficient cells. This work supports the notion that specific targeting of the metalloinsertors to nuclear DNA gives rise to their cytotoxic and antiproliferative activities that are selective for cells deficient in MMR.

To explore further the basis of the unique selectivity of the metlloinsertors in targeting MMR-deficient cells, experiments were conducted using engineered NCI-H23 lung adenocarcinoma cells that contain a doxycycline-inducible shRNA which suppresses the expression of the MMR gene MLH1. Here we use this new cell line to further validate rhodium metalloinsertors as compounds capable of differentially inhibiting the proliferation of MMR-deficient cancer cells over isogenic MMR-proficient cells. General DNA damaging agents, such as cisplatin and etoposide, in contrast, are less effective in the induced cell line defective in MMR.

Finally, we describe a new subclass of metalloinsertors with enhanced potency and selectivity, in which the complexes show Rh-O coordination. In particular, it has been found that both Δ and Λ enantiomers of [Rh(chrysi)(phen)(DPE)]2+ bind to DNA with similar affinities, suggesting a possible different binding conformation than previous metalloinsertors. Remarkably, all members of this new family of compounds have significantly increased potency in a range of cellular assays; indeed, all are more potent than the FDA-approved anticancer drugs cisplatin and MNNG. Moreover, these activities are coupled with high levels of selectivity for MMR-deficient cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Barton laboratory has established that octahedral rhodium complexes bearing the sterically expansive 5,6-chrysene diimine ligand can target thermodynamically destabilized sites, such as base pair mismatches, in DNA with high affinity and selectivity. These complexes approach DNA from the minor groove, ejecting the mismatched base pairs from the duplex in a binding mode termed metalloinsertion. In recent years, we have shown that these metalloinsertor complexes also exhibit cytotoxicity preferentially in cancer cells that are deficient in the mismatch repair (MMR) machinery.

Here, we establish that a sensitive structure-activity relationship exists for rhodium metalloinsertors. We studied the relationship between the chemical structures of metalloinsertors and their effect on biological activity for ten complexes with similar DNA binding affinities, but wide variation in their lipophilicity. Drastic differences were observed in the selectivities of the complexes for MMR-deficient cells. Compounds with hydrophilic ligands were highly selective, exhibiting preferential cytotoxicity in MMR-deficient cells at low concentrations and short incubation periods, whereas complexes with lipophilic ligands displayed poor cell-selectivity. It was discovered that all of the complexes localized to the nucleus in concentrations sufficient for mismatch binding; however, highly lipophilic complexes also exhibited high mitochondrial uptake. Significantly, these results support the notion that mitochondrial DNA is not the desired target for our metalloinsertor complexes; instead, selectivity stems from targeting mismatches in genomic DNA.

We have also explored the potential for metalloinsertors to be developed into more complex structures with multiple functionalities that could either enhance their overall potency or impart mismatch selectivity onto other therapeutic cargo. We have constructed a family of bifunctional metalloinsertor conjugates incorporating cis-platinum, each unique in its chemical structure, DNA binding interactions, and biological activity. The study of these complexes in MMR-deficient cells has established that the cell-selective biological activity of rhodium metalloinsertors proceeds through a critical cellular pathway leading to necrosis.

We further explored the underlying mechanisms surrounding the biological response to mismatch recognition by metalloinsertors in the genome. Immunofluorescence assays of MMR-deficient and MMR-proficient cells revealed that a critical biomarker for DNA damage, phosphorylation of histone H2AX (γH2AX) rapidly accumulates in response to metalloinsertor treatment, signifying the induction of double strand breaks in the genome. Significantly, we have discovered that our metalloinsertor complexes selectively inhibit transcription in MMR-deficient cells, which may be a crucial checkpoint in the eventual breakdown of the cell via necrosis. Additionally, preliminary in vivo studies have revealed the capability of these compounds to traverse the complex environments of multicellular organisms and accumulate in MMR-deficient tumors. Our ever-increasing understanding of metalloinsertors, as well as the development of new generations of complexes both monofunctional and bifunctional, enables their continued progress into the clinic as promising new chemotherapeutic agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Palladium, iridium, and rhodium complexes of 2-methyleneimidazolines have been synthesized by selective phosphine-assisted activation of the 2-methyl C-H bonds in 2-methylimidazolium compounds. Metallacycles of various sizes were obtained in the reaction of phosphine-tethered 2-methylimidazolium compounds and [{M(cod)X}(2)] (M = Rh or Ir cod = 1,5-cyclooctadiene: X = alkoxyl or Cl). representative complexes were characterized by X-ray crystallography. The selectivity for aliphatic C(sp(3))H versus aromatic C(sp(2))H activation could be adjusted by means of the steric bulk of the OR ligand, whereby a bulky, OR group favors activation of the 2-methyl C(sp(3))-H bond. Experimental results confirmed that a methyl C-H activation product (a seven-membered iridacycle) is the kinetic product, while the aryl C-H activation product (a six-membered iridacycle) is the thermodynamic product.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbonyl-iridium half-sandwich compounds, Cp*Ir(CO)(EPh)(2) (E = S, Se), were prepared by the photo-induced reaction of Cp*Ir(CO)(2) with the diphenyl dichalcogenides, E2Ph2, and used as neutral chelating ligands in carbonylmetal complexes such as Cp*Ir(CO)(mu-EPh)(2)[Cr(CO)(4)], Cp*Ir(CO)(mu-EPh)(2)[Mo(CO)(4)] and Cp*Ir(CO)(mu-EPh)(2)[Fe(CO)(3)], respectively. A trimethylphosphane - iridium analogue, Cp*Ir(PMe3)(mu-SeMe)(2)[Cr(CO)(4)], was also obtained. The new heterodimetallic complexes were characterized by IR and NMR spectroscopy, and the molecular geometry of Cp*Ir(CO)(mu-SePh)(2)[Mo(CO)(4)] has been determined by a single crystal X-ray structure analysis. According to the long Ir...Mo distance (395.3(1) Angstrom), direct metal-metal interactions appear to be absent. (C) 1998 Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chapter 1 of this thesis is a brief introduction to the preparation and reactions of α-diazocarbonyl compounds, with particular emphasis on the areas relating to the research undertaken: C-H insertion, addition to aromatics, and oxonium ylide generation and rearrangement. A short summary of catalyst development illustrates the importance of rhodium(II)carboxylates for α-diazocarbonyl decomposition. Chapter 2 describes intramolecular C-H insertion reactions of α-diazo-β-keto sulphones to form substituted cyclopentanones. Rhodium(II) carboxylates derived from homochiral carboxylic acids were used as catalysts in these reactions and enantioselection achieved through their use is discussed. Chapter 3 describes intramolecular Buchner cyclisation of aryl diazoketones with emphasis on the stereochemical aspects of the cyclisation and subsequent reaction of the bicyclo[5.3.0]decatrienones produced. The partial asymmetric synthesis achieved through use of chiral rhodium(II) carboxylates as catalysts is discussed. The application of the intramolecular Buchner reaction to the synthesis of hydroazulene lactones is illustrated. Chapter 4 demonstrates oxonium ylide formation and rearrangement in the decomposition of an α-diazoketone. The consequences of the use of chiral rhodium(II) carboxylates as catalysts are described. Particularly significant was the discovery that rhodium(II) (S)-mandelate acts as a very efficient catalyst for α-diazoketone decompositions, in general. Moderate asymmetric induction was possible in the decomposition of α-diazoketones with chiral rhodium(II) carboxylates, with rhodium(II) (S)-mandelate being one of the more enantioselective catalysts investigated. However, the asymmetric induction obtained was very dependent on the exact structure of the α-diazoketone, the catalyst, and the nature of the reaction. Chapter 5 contains the experimental details, and the spectral and analytical data for all new compounds reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2-Phosphanylethylcyclopentadienyl lithium compounds, Li[C5R'(4)(CH2)(2)PR2] (R = Et, R' = H or Me, R = Ph, R' = Me), have been prepared from the reaction of spirohydrocarbons C5R'(4)(C2H4) with LiPR2. C5Et4HSiMe2CH2PMe2, was prepared from reaction of Li[C5Et4] with Me2SiCl2 followed by Me2PCH2Li. The lithium salts were reacted with [RhCl(CO)2]2,[IrCl(CO)3] or [Co-2(CO)(8)] to give [M(C5R'(4)(CH2) 2PR2)(CO)] (M = Rh, R = Et, R' = H or Me, R= Ph, R' = Me; M = Ir or Co, R = Et, R' = Me), which have been fully characterised, in many cases crystallographically as monomers with coordination of the phosphorus atom and the cyclopentadienyl ring. The values of nu(CO) for these complexes are usually lower than those for the analogous complexes without the bridge between the cyclopentadienyl ring and the phosphine, the exception being [Rh(Cp'(CH2)(2)PEt2)(CO)] (Cp' = C5Me4), the most electron rich of the complexes. [Rh(C5Et4SiMe2CH2PMe2)(CO)] may be a dimer. [Co-2(CO)(8)] reacts with C5H5(CH2)(2)PEt2 or C5Et4HSiMe2CH2PMe2 (L) to give binuclear complexes of the form [Co-2(CO)(6)L-2] with almost linear PCoCoP skeletons. [Rh(Cp'(CH2)(2)PEt2)(CO)] and [Rh(Cp'(CH2)(2)PPh2)(CO)] are active for methanol carbonylation at 150 degrees C and 27 bar CO, with the rate using [Rh(Cp'(CH2)(2)PPh2)(CO)] (0.81 mol dm(-3) h(-1)) being higher than that for [RhI2(CO)(2)](-) (0.64 mol dm(-3) h(-1)). The most electron rich complex, [Rh(Cp'(CH2)(2)PEt2)(CO)] (0.38 mol dm(-3) h(-1)) gave a comparable rate to [Cp*Rh(PEt3)(CO)] (0.30 mol dm(-3) h(-1)), which was unstable towards oxidation of the phosphine. [Rh(Cp'(CH2)(2)PEt2)I-2], which is inactive for methanol carbonylation, was isolated after the methanol carbonylation reaction using [Rh(Cp'(CH2)(2)PEt2)(CO)].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance optimisation of automotive catalysts has been the focus of a great deal of research for many years as the automotive industry has endeavored to reduce the emission of toxic and pollutant gases generated from internal combustion engines. Just as the emissions from diesel and gasoline combustion vary so do the emissions from combustion of alternative fuels such as ethanol; the variation is in both quantity and chemical composition. In particular, when ethanol is contained in the fuel, ethanol and acetaldehyde are present in the exhaust gas stream and these are two compounds which the catalytic converter has not traditionally been designed to manage. The aim of the study outlined in this paper was to assess the performance of various catalyst formulations when subjected to a representative ethanol exhaust gas mixture. Three automotive catalytic converter formulations were tested including a fully Pt sample, a PdRh three-way catalyst sample and a fully Pd sample. Initially the samples were tested using single component hydrocarbon light-off tests followed by a set of tests with carbon monoxide included as an inlet gas to observe its effect on each individual hydrocarbon oxidation. Finally, each formulation was tested using a full E85 exhaust gas mixture. The study was carried out using a synthetic gas reactor along with FTIR and FID exhaust gas analysers. All formulations showed selectivity toward acetaldehyde formation from ethanol dehydrogenation which resulted in negative acetaldehyde conversion across each of the samples during the mixture tests. The fully Pt sample was the most detrimentally affected by the introduction of carbon monoxide into the gas feed. The Pd and PdRh samples exhibited a tendency toward acetaldehyde decomposition resulting in methane and carbon monoxide formation. The Pt sample did not form methane but did form ethylene as a result of ethanol dehydration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of synthetically useful ring systems can be prepared via the intramolecular insertion of a metal-stabilized carbenoid into a heteroaromatic systems. The chemical outcome of these reactions are dependent not only on the nature of the heteroatom but also on the length of the aliphatic tether linking the carbenoid moiety with the aromatic fragment. Our work with furanyl and thienyl systems containing a single methylene tether have allowed for some rather atypical chemistry. For example, treatment of l-diazo-3-(2-thienyl)-2-propanone (6) with catalytic rhodium (II) acetate yields 5,6- dihydro-4^-cyclopenta[Z>]thiophen-5-one (3) while, the isomeric l-diazo-3-(3-thienyl)-2- propanone(15) gives a spiro-disulphide (20). Novel chemistry was also exhibited in the analogous furanyl systems. While treatment of l-diazo-3-(3-furanyl)-2-propanone (52) with Rh2(OAc)4 resulted in the expected 2-(4-Oxo-2-cyclopentenyliden)acetaldehyde (54), isomeric l-diazo-3-(2- furanyl)-2-propanone (8) undergoes vinylogous Wolff rearrangement to give a mixture of 6a-methyl-2,3,3a,6a-tetrahydrofuro[2,i-^>]furan-2-one (44) and 2-(2-methyl-3-furyl)acetic acid (43). Rhodium acetate catalyzed decomposition of l-diazo-3-(3-benzofuranyl)-2- propanone (84) and l-diazo-3-(2-benzofuranyl)-2-propanone (69)also allows for vinylogous Wolff rearrangement, a chemistry unseen in benzofuranyl systems with longer tethers. A number of interesting products were isolated from the trapping of intermediate ketenes. Decomposition of l-diazo-3-(3-benzothienyl)-2-propanone (100) resulted in the formation of 2,3-dihydro-l//-benzo[^]cyclopenta[^thiophen-2-one (102). However, in addition to (102), a dimer was also generated from the decomposition of l-diazo-3-(2- benzothienyl)-2-propanone (109). The insight into the mechanistic underpinnings of the above reactions are provided by molecular modeling at a PM3 level.