37 resultados para Rhamnolipids


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wetting behavior of rhamnolipids produced by Pseudomonas aeruginosa LBI strain grown on waste oil substrate and sodium dodecyl sulfate (SDS) on glass, polyethylene terephthalate (PET), poly(vinyl chloride) (PVC), poly(epsilon-caprolactone) (PCL) and polymer blend (PVC-PCL) was investigated by the measuring contact angle of sessile drops, to determine the wetting characteristics of rhamnolipids. The comparison of the wetting profiles showed that at low SDS and rhamnolipid concentrations, the contact angle increased and when the concentration of the surfactant increased further, the contact angle decreased. The blend surface (PVC-PCL) showed better wettability than the homopolymers themselves and the blend changed the surface hydrophobicity of the polymer, making it more hydrophilic. The rhamnolipids produced by the LBI strain exhibited superior wetting abilities than the chemical surfactant SDS one. This is the first work that evaluates the wetting properties of rhamnolipids on polymer blends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycerol, cassava wastewater (CW), waste cooking oil and CW with waste frying oils were evaluated as alternative low-cost carbon substrates for the production of rhamnolipids and polyhydroxyalkanoates (PHAs) by various Pseudomonas aeruginosa strains. The polymers and surfactants produced were characterized by gas chromatography-mass spectrophotometry (MS) and by high-performance liquid chromatography-MS, and their composition was found to vary with the carbon source and the strain used in the fermentation. The best overall production of rhamnolipids and PHAs was obtained with CW with frying oil as the carbon source, with PHA production corresponding to 39% of the cell dry weight and rhamnolipid production being 660 mg l(-1). Under these conditions, the surface tension of the culture decreased to 30 mN m(-1), and the critical micelle concentration was 26.5 mg l(-1). It would appear that CW with frying oil has the highest potential as an alternative substrate, and its use may contribute to a reduction in the overall environmental impact generated by discarding such residues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several microorganisms are known to produce a wide variety of surface-active substances, which are referred to as biosurfactants. Interesting examples for biosurfactants are rhamnolipids, glycolipids mainly known from Pseudomonas aeruginosa produced during cultivation on different substrates like vegetable oils, sugars, glycerol or hydrocarbons. However, besides costs for downstream processing of rhamnolipids, relatively high raw-material prices and low productivities currently inhibit potential economical production of rhamnolipids on an industrial scale. This review focuses on cost-effective and sustainable production of rhamnolipids by introducing new possibilities and strategies regarding renewable substrates. Additionally, past and recent production strategies using alternative substrates such as agro-industrial byproducts or wastes are summarized. Requirements and concepts for next-generation rhamnolipid producing strains are discussed and potential targets for strain-engineering are presented. The discussion of potential new strategies is supported by an analysis of the metabolism of different Pseudomonas species. According to calculations of theoretical substrate-to-product conversion yields and current world-market price analysis, different renewable substrates are compared and discussed from an economical point of view. A next-generation rhamnolipid producing strain, as proposed within this review, may be engineered towards reduced formation of byproducts, increased metabolic spectrum, broadened substrate spectrum and controlled regulation for the induction of rhamnolipid synthesis. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results from study investigating the capacity of Pseudomonas aeruginosa LBI growing on several carbon (Hydrophilic substrate) and nitrogen sources. The carbon source (2016) studied were: glycerol, manitol, fructose, glucose, lactose and the nitrogen sources (2; 3; 4 and 5016) were: NaNO3, NH4NO3, (NH4)(2)SO4 and (NH2)(2)CO. At the 96 h of fermentation, the medium with glycerol as a carbon source reached 7.9 g/L of rhamnolipids and 1. 2 g/L cellular protein. The surface tension reduction was 38.46 % for glycerol as a carbon source. The NaNO3 at 3% was the best concentration for rhamnolipids production (7.35 g/L) and cellular protein (1.12 g/L). The influences of metal ions [FeSO4.7H(2)O (0.001g/L, 0.005 g/L and 0.1 g/L) and MgSO4.7H(2)O (0.001 g/L, 0.005 g/L and 0.1 g/L)] on ramnolipids production were studied. Fe2+ had a negative influence on the studied concentrations while Mg2+ had a positive influence when its concentration was increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oils from Buriti (Mauritia flexuosa), Cupuacu (Theobroma grandiflora), Passion Fruit (Passiflora alata), Andiroba (Carapa gitianensis), Brazilian Nut (Bertholletia excelsa) and Babassu (Orbignya spp.) were evaluated as carbon sources for rhamnolipid production by Pseudomonas aeruginosa LBI. The highest rhamnolipid concentrations were obtained from Brazilian Nut (9.9 l(-1)) and Passion Fruit (9.2 g l(-1)) oils. Surface tension varied from 29.8 to 31.5 mN m(-1), critical micelle concentration from 55 to 163 mg l(-1) and the emulsifying activity was higher against toluene (93-100%) than against kerosene (70-92%). Preliminary characterization of the surfactant mixtures by mass spectrometry revealed the presence of two major components showing m/z of 649 and 503, which corresponded to the dirhamnolipid (Rha(2)C(10)C(10)) and the monorhamnolipid (RhaC(10)C(10)), respectively. The monorhamnolipid detected as the ion of m/z 503 is predominant in all samples analyzed. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biosurfactants are surface active compounds released by microorganisms. They are biodegradable non-toxic and eco-friendly materials. In this review we have updated the information about different microbial surfactants. The biosurfactant production depends on the fermentation conditions, environmental factors and nutrient availability. The extraction of the biosurfactants from the cell-free supernatant using the solvent extraction procedure and the qualitative and quantitative analysis has been discussed with appropriate equipment details. The application of the biosurfactant includes biomedical, cosmetic and bioremediation. The type of microbial biosurfactants include trehalose lipids, rhamnolipids, sophorolipids, glycolipids, cellobiose lipids, polyol lipids, diglycosyl diglycerides, lipoloysaccharides, arthrofactin, lichensyn A and B, surfactin, viscosin, phospholipids, sulphonyl lipids and fatty acids. Rhamnolipid biosurfactants produced by Pseudomonas aeruginosa DS10-129 showed significant applications in the bioremediation of hydrocarbons in gasoline spilled soil and petroleum oily sludge. Rhamnolipid biosurfactant enhanced the bioremediation process by releasing the weathered oil from the soil matrices and enhanced the bioavailability of hydrocarbons for microbial degradation. It is having potential applications in the remediation of hydrocarbon contaminated sites. Biosurfactants from marine microorganisms also offer great potential in bioremediation of oil contaminated oceanic environments

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soybean oil soapstock was utilized as an alternative carbon source for the production of rhamnolipids by Pseudomonas aeruginosa LBI strain. The chemical composition and properties of the rhamnolipid mixture obtained were determined to define its potential applications. The chemical characterization of the rhamnolipid has revealed the presence of ten different homologues. The monorhamnolipid RhaC(10)C(10) and the dirhamnolipid Rha(2)C(10)C(10) were the main components of the mixture that showed predominance of 44% and 29%, respectively, after 144-h of cultivation. The biosurfactant was able to form stable emulsions with several hydrocarbons and showed excellent emulsification for soybean oil and chicken fat (100%). The rhamnolipid removed 67% of crude oil present in sand samples and presented antimicrobial activity against Bacillus cereus and Mucor miehei at 64 mu g/mL and inhibition of Neurospora crassa, Staphylococcus aureus, and Micrococcus luteus at 256 mu g/mL. The results demonstrated that the rhamnolipid produced in soybean oil soapstock can be useful in environmental and food industry applications.