955 resultados para Reservoir simulation. Steam injection. Injector well. Coupled


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steam injection is a method usually applied to very viscous oils and consists of injecting heat to reduce the viscosity and, therefore, increase the oil mobility, improving the oil production. For designing a steam injection project it is necessary to have a reservoir simulation in order to define the various parameters necessary for an efficient heat reservoir management, and with this, improve the recovery factor of the reservoir. The purpose of this work is to show the influence of the coupled wellbore/reservoir on the thermal simulation of reservoirs under cyclic steam stimulation. In this study, the methodology used in the solution of the problem involved the development of a wellbore model for the integration of steam flow model in injection wellbores, VapMec, and a blackoil reservoir model for the injection of cyclic steam in oil reservoirs. Thus, case studies were developed for shallow and deep reservoirs, whereas the usual configurations of injector well existing in the oil industry, i.e., conventional tubing without packer, conventional tubing with packer and insulated tubing with packer. A comparative study of the injection and production parameters was performed, always considering the same operational conditions, for the two simulation models, non-coupled and a coupled model. It was observed that the results are very similar for the specified well injection rate, whereas significant differences for the specified well pressure. Finally, on the basis of computational experiments, it was concluded that the influence of the coupled wellbore/reservoir in thermal simulations using cyclic steam injection as an enhanced oil recovery method is greater for the specified well pressure, while for the specified well injection rate, the steam flow model for the injector well and the reservoir may be simulated in a non- coupled way

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steam injection is a method usually applied to very viscous oils and consists of injecting heat to reduce the viscosity and, therefore, increase the oil mobility, improving the oil production. For designing a steam injection project it is necessary to have a reservoir simulation in order to define the various parameters necessary for an efficient heat reservoir management, and with this, improve the recovery factor of the reservoir. The purpose of this work is to show the influence of the coupled wellbore/reservoir on the thermal simulation of reservoirs under cyclic steam stimulation. In this study, the methodology used in the solution of the problem involved the development of a wellbore model for the integration of steam flow model in injection wellbores, VapMec, and a blackoil reservoir model for the injection of cyclic steam in oil reservoirs. Thus, case studies were developed for shallow and deep reservoirs, whereas the usual configurations of injector well existing in the oil industry, i.e., conventional tubing without packer, conventional tubing with packer and insulated tubing with packer. A comparative study of the injection and production parameters was performed, always considering the same operational conditions, for the two simulation models, non-coupled and a coupled model. It was observed that the results are very similar for the specified well injection rate, whereas significant differences for the specified well pressure. Finally, on the basis of computational experiments, it was concluded that the influence of the coupled wellbore/reservoir in thermal simulations using cyclic steam injection as an enhanced oil recovery method is greater for the specified well pressure, while for the specified well injection rate, the steam flow model for the injector well and the reservoir may be simulated in a non- coupled way

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Until the early 90s, the simulation of fluid flow in oil reservoir basically used the numerical technique of finite differences. Since then, there was a big development in simulation technology based on streamlines, so that nowadays it is being used in several cases and it can represent the physical mechanisms that influence the fluid flow, such as compressibility, capillarity and gravitational segregation. Streamline-based flow simulation is a tool that can help enough in waterflood project management, because it provides important information not available through traditional simulation of finite differences and shows, in a direct way, the influence between injector well and producer well. This work presents the application of a methodology published in literature for optimizing water injection projects in modeling of a Brazilian Potiguar Basin reservoir that has a large number of wells. This methodology considers changes of injection well rates over time, based on information available through streamline simulation. This methodology reduces injection rates in wells of lower efficiency and increases injection rates in more efficient wells. In the proposed model, the methodology was effective. The optimized alternatives presented higher oil recovery associated with a lower water injection volume. This shows better efficiency and, consequently, reduction in costs. Considering the wide use of the water injection in oil fields, the positive outcome of the modeling is important, because it shows a case study of increasing of oil recovery achieved simply through better distribution of water injection rates

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Until the early 90s, the simulation of fluid flow in oil reservoir basically used the numerical technique of finite differences. Since then, there was a big development in simulation technology based on streamlines, so that nowadays it is being used in several cases and it can represent the physical mechanisms that influence the fluid flow, such as compressibility, capillarity and gravitational segregation. Streamline-based flow simulation is a tool that can help enough in waterflood project management, because it provides important information not available through traditional simulation of finite differences and shows, in a direct way, the influence between injector well and producer well. This work presents the application of a methodology published in literature for optimizing water injection projects in modeling of a Brazilian Potiguar Basin reservoir that has a large number of wells. This methodology considers changes of injection well rates over time, based on information available through streamline simulation. This methodology reduces injection rates in wells of lower efficiency and increases injection rates in more efficient wells. In the proposed model, the methodology was effective. The optimized alternatives presented higher oil recovery associated with a lower water injection volume. This shows better efficiency and, consequently, reduction in costs. Considering the wide use of the water injection in oil fields, the positive outcome of the modeling is important, because it shows a case study of increasing of oil recovery achieved simply through better distribution of water injection rates

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents the results on the diagnostics and numerical modeling of low-frequency (∼460 KHz) inductively coupled plasmas generated in a cylindrical metal chamber by an external flat spiral coil. Experimental data on the electron number densities and temperatures, electron energy distribution functions, and optical emission intensities of the abundant plasma species in low/intermediate pressure argon discharges are included. The spatial profiles of the plasma density, electron temperature, and excited argon species are computed, for different rf powers and working gas pressures, using the two-dimensional fluid approach. The model allows one to achieve a reasonable agreement between the computed and experimental data. The effect of the neutral gas temperature on the plasma parameters is also investigated. It is shown that neutral gas heating (at rf powers≥0.55kW) is one of the key factors that control the electron number density and temperature. The dependence of the average rf power loss, per electron-ion pair created, on the working gas pressure shows that the electron heat flux to the walls appears to be a critical factor in the total power loss in the discharge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laterally-coupled distributed feedback (LC-DFB) laser diodes made without an epitaxial re-growth process have the advantage of a simple fabrication process. In this paper, two-dimensional optical field distribution of the fundamental quasi TE (transverse electric) mode is calculated by means of a semivectorial finite-difference method (SV-FDM). The dependence of the effective coupling coefficient (kappa(eff)) on the dutycycle of first-, second- and third-order LC-DFB LDs is investigated using modified coupled wave equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rheology of milk foams generated by steam injection was studied during the transient destabilization process using steady flow and dynamic oscillatory techniques: yield stress (τ_y) values were obtained from a stress ramp (0.2 to 25 Pa) and from strain amplitude sweep (0.001 to 3 at 1 Hz of frequency); elastic (G') and viscous (G") moduli were measured by frequency sweep (0.1 to 150 Hz at 0.05 of strain); and the apparent viscosity (η_a) was obtained from the flow curves generated from the stress ramp. The effect of plate roughness and the sweep time on τ_y was also assessed. Yield stress was found to increase with plate roughness whereas it decreased with the sweep time. The values of yield stress and moduli—G' and G"—increased during foam destabilization as a consequence of the changes in foam properties, especially the gas volume fraction, φ, and bubble size, R_32 (Sauter mean bubble radius). Thus, a relationship between τ_y, φ, R_32, and σ (surface tension) was established. The changes in the apparent viscosity, η, showed that the foams behaved like a shear thinning fluid beyond the yield point, fitting the modified Cross model with the relaxation time parameter (λ) also depending on the gas volume fraction. Overall, it was concluded that the viscoelastic behavior of the foam below the yield point and liquid-like behavior thereafter both vary during destabilization due to changes in the foam characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foam properties depend on the physico-chemical characteristics of the continuous phase, the method of production and process conditions employed; however the preparation of barista-style milk foams in coffee shops by injection of steam uses milk as its main ingredient which limits the control of foam properties by changing the biochemical characteristics of the continuous phase. Therefore, the control of process conditions and nozzle design are the only ways available to produce foams with diverse properties. Milk foams were produced employing different steam pressures (100-280 kPa gauge) and nozzle designs (ejector, plunging-jet and confined-jet nozzles). The foamability of milk, and the stability, bubble size and texture of the foams were investigated. Variations in steam pressure and nozzle design changed the hydrodynamic conditions during foam production, resulting in foams having a range of properties. Steam pressure influenced foam characteristics, although the net effect depended on the nozzle design used. These results suggest that, in addition to the physicochemical determinants of milk, the foam properties can also be controlled by changing the steam pressure and nozzle design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deficiencies in the design of surface plasmon resonance (SPR) systems that are reported in numerous published works consistently identify the optics assembly as the main problem in the miniaturization of SPR sensors for integration into biosensor systems. This paper presents a novel design of a grating coupled optical waveguide surface plasmon (SP) excitation mechanism, investigated with the intention of addressing the problems associated with using the traditional prism input-output light coupling approach. Computational multiphysics modeling and simulation of the design is carried out. The results are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main activities in the petroleum engineering is to estimate the oil production in the existing oil reserves. The calculation of these reserves is crucial to determine the economical feasibility of your explotation. Currently, the petroleum industry is facing problems to analyze production due to the exponentially increasing amount of data provided by the production facilities. Conventional reservoir modeling techniques like numerical reservoir simulation and visualization were well developed and are available. This work proposes intelligent methods, like artificial neural networks, to predict the oil production and compare the results with the ones obtained by the numerical simulation, method quite a lot used in the practice to realization of the oil production prediction behavior. The artificial neural networks will be used due your learning, adaptation and interpolation capabilities