988 resultados para Reservoir Simulation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Due to the increase in water demand and hydropower energy, it is getting more important to operate hydraulic structures in an efficient manner while sustaining multiple demands. Especially, companies, governmental agencies, consultant offices require effective, practical integrated tools and decision support frameworks to operate reservoirs, cascades of run-of-river plants and related elements such as canals by merging hydrological and reservoir simulation/optimization models with various numerical weather predictions, radar and satellite data. The model performance is highly related with the streamflow forecast, related uncertainty and its consideration in the decision making. While deterministic weather predictions and its corresponding streamflow forecasts directly restrict the manager to single deterministic trajectories, probabilistic forecasts can be a key solution by including uncertainty in flow forecast scenarios for dam operation. The objective of this study is to compare deterministic and probabilistic streamflow forecasts on an earlier developed basin/reservoir model for short term reservoir management. The study is applied to the Yuvacık Reservoir and its upstream basin which is the main water supply of Kocaeli City located in the northwestern part of Turkey. The reservoir represents a typical example by its limited capacity, downstream channel restrictions and high snowmelt potential. Mesoscale Model 5 and Ensemble Prediction System data are used as a main input and the flow forecasts are done for 2012 year using HEC-HMS. Hydrometeorological rule-based reservoir simulation model is accomplished with HEC-ResSim and integrated with forecasts. Since EPS based hydrological model produce a large number of equal probable scenarios, it will indicate how uncertainty spreads in the future. Thus, it will provide risk ranges in terms of spillway discharges and reservoir level for operator when it is compared with deterministic approach. The framework is fully data driven, applicable, useful to the profession and the knowledge can be transferred to other similar reservoir systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

有限元法用于油藏数值模拟具有独特的优越性.由于井筒附近流动的特殊性,直接采用数值模拟得到的压力梯度计算油井产量会导致较大的误差.本文分析了数值模拟中井筒压力梯度产生误差的原因,在此基础上提出了计算井筒压力梯度的校正公式.计算结果表明,压力梯度校正公式可显著提高油井产量的计算精度,并能有效地减少井筒附近的网格剖分数量,从而提高了计算效率.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atualmente, existem modelos matemáticos capazes de preverem acuradamente as relações entre propriedades de estado; e esta tarefa é extremamente importante no contexto da Engenharia Química, uma vez que estes modelos podem ser empregados para avaliar a performance de processos químicos. Ademais, eles são de fundamental importância para a simulação de reservatórios de petróleo e processos de separação. Estes modelos são conhecidos como equações de estado, e podem ser usados em problemas de equilíbrios de fases, principalmente em equilíbrios líquido-vapor. Recentemente, um teorema matemático foi formulado (Teorema de Redução), fornecendo as condições para a redução de dimensionalidade de problemas de equilíbrios de fases para misturas multicomponentes descritas por equações de estado cúbicas e regras de mistura e combinação clássicas. Este teorema mostra como para uma classe bem definidade de modelos termodinâmicos (equações de estado cúbicas e regras de mistura clássicas), pode-se reduzir a dimensão de vários problemas de equilíbrios de fases. Este método é muito vantajoso para misturas com muitos componentes, promovendo uma redução significativa no tempo de computação e produzindo resultados acurados. Neste trabalho, apresentamos alguns experimentos numéricos com misturas-testes usando a técnica de redução para obter pressões de ponto de orvalho sob especificação de temperaturas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente trabalho trata do escoamento bifásico em meios porosos heterogêneos de natureza fractal, onde os fluidos são considerados imiscíveis. Os meios porosos são modelados pela equação de Kozeny-Carman Generalizada (KCG), a qual relaciona a porosidade com a permeabilidade do meio através de uma nova lei de potência. Esta equação proposta por nós é capaz de generalizar diferentes modelos existentes na literatura e, portanto, é de uso mais geral. O simulador numérico desenvolvido aqui emprega métodos de diferenças finitas. A evolução temporal é baseada em um esquema de separação de operadores que segue a estratégia clássica chamada de IMPES. Assim, o campo de pressão é calculado implicitamente, enquanto que a equação da saturação da fase molhante é resolvida explicitamente em cada nível de tempo. O método de otimização denominado de DFSANE é utilizado para resolver a equação da pressão. Enfatizamos que o DFSANE nunca foi usado antes no contexto de simulação de reservatórios. Portanto, o seu uso aqui é sem precedentes. Para minimizar difusões numéricas, a equação da saturação é discretizada por um esquema do tipo "upwind", comumente empregado em simuladores numéricos para a recuperação de petróleo, o qual é resolvido explicitamente pelo método Runge-Kutta de quarta ordem. Os resultados das simulações são bastante satisfatórios. De fato, tais resultados mostram que o modelo KCG é capaz de gerar meios porosos heterogêneos, cujas características permitem a captura de fenômenos físicos que, geralmente, são de difícil acesso para muitos simuladores em diferenças finitas clássicas, como o chamado fenômeno de dedilhamento, que ocorre quando a razão de mobilidade (entre as fases fluidas) assume valores adversos. Em todas as simulações apresentadas aqui, consideramos que o problema imiscível é bidimensional, sendo, portanto, o meio poroso caracterizado por campos de permeabilidade e de porosidade definidos em regiões Euclideanas. No entanto, a teoria abordada neste trabalho não impõe restrições para sua aplicação aos problemas tridimensionais.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Uma simulação numérica que leva em conta os efeitos de estratificação e mistura escalar (como a temperatura, salinidade ou substância solúvel em água) é necessária para estudar e prever os impactos ambientais que um reservatório de usina hidrelétrica pode produzir. Este trabalho sugere uma metodologia para o estudo de escoamentos ambientais, principalmente aqueles em que o conhecimento da interação entre a estratificação e mistura pode dar noções importantes dos fenômenos que ocorrem. Por esta razão, ferramentas de simulação numérica 3D de escoamento ambiental são desenvolvidas. Um gerador de malha de tetraedros do reservatório e o modelo de turbulência algébrico baseado no número de Richardson são as principais ferramentas desenvolvidas. A principal dificuldade na geração de uma malha de tetraedros de um reservatório é a distribuição não uniforme dos pontos relacionada com a relação desproporcional entre as escalas horizontais e verticais do reservatório. Neste tipo de distribuição de pontos, o algoritmo convencional de geração de malha de tetraedros pode tornar-se instável. Por esta razão, um gerador de malha não estruturada de tetraedros é desenvolvido e a metodologia utilizada para obter elementos conformes é descrita. A geração de malha superficial de triângulos utilizando a triangulação Delaunay e a construção do tetraedros a partir da malha triangular são os principais passos para o gerador de malha. A simulação hidrodinâmica com o modelo de turbulência fornece uma ferramenta útil e computacionalmente viável para fins de engenharia. Além disso, o modelo de turbulência baseado no número de Richardson leva em conta os efeitos da interação entre turbulência e estratificação. O modelo algébrico é o mais simples entre os diversos modelos de turbulência. Mas, fornece resultados realistas com o ajuste de uma pequena quantidade de parâmetros. São incorporados os modelos de viscosidade/difusividade turbulenta para escoamento estratificado. Na aproximação das equações médias de Reynolds e transporte de escalar é utilizando o Método dos Elementos Finitos. Os termos convectivos são aproximados utilizando o método semi-Lagrangeano, e a aproximação espacial é baseada no método de Galerkin. Os resultados computacionais são comparados com os resultados disponíveis na literatura. E, finalmente, a simulação de escoamento em um braço de reservatório é apresentada.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Desde a década de 1960, devido à pertinência para a indústria petrolífera, a simulação numérica de reservatórios de petróleo tornou-se uma ferramenta usual e uma intensa área de pesquisa. O principal objetivo da modelagem computacional e do uso de métodos numéricos, para a simulação de reservatórios de petróleo, é o de possibilitar um melhor gerenciamento do campo produtor, de maneira que haja uma maximização na recuperação de hidrocarbonetos. Este trabalho tem como objetivo principal paralelizar, empregando a interface de programação de aplicativo OpenMP (Open Multi-Processing), o método numérico utilizado na resolução do sistema algébrico resultante da discretização da equação que descreve o escoamento monofásico em um reservatório de gás, em termos da variável pressão. O conjunto de equações governantes é formado pela equação da continuidade, por uma expressão para o balanço da quantidade de movimento e por uma equação de estado. A Equação da Difusividade Hidráulica (EDH), para a variável pressão, é obtida a partir deste conjunto de equações fundamentais, sendo então discretizada pela utilização do Método de Diferenças Finitas, com a escolha por uma formulação implícita. Diferentes testes numéricos são realizados a fim de estudar a eficiência computacional das versões paralelizadas dos métodos iterativos de Jacobi, Gauss-Seidel, Sobre-relaxação Sucessiva, Gradientes Conjugados (CG), Gradiente Biconjugado (BiCG) e Gradiente Biconjugado Estabilizado (BiCGStab), visando a uma futura aplicação dos mesmos na simulação de reservatórios de gás. Ressalta-se que a presença de heterogeneidades na rocha reservatório e/ou às não-linearidades presentes na EDH para o escoamento de gás aumentam a necessidade de métodos eficientes do ponto de vista de custo computacional, como é o caso de estratégias usando OpenMP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dynamic prediction of complex reservoir development is one of the important research contents of dynamic analysis of oil and gas development. With the increase development of time, the permeabilities and porosities of reservoirs and the permeability of block reservoir at its boundaries are dynamically changing. How to track the dynamic change of permeability and porosity and make certain the permeability of block reservoir at its boundary is an important practical problem. To study developing dynamic prediction of complex reservoir, the key problem of research of dynamic prediction of complex reservoir development is realizing inversion of permeability and porosity. To realize the inversion, first of all, the fast forward and inverse method of 3-dimension reservoir simulation must be studied. Although the inversion has been widely applied to exploration and logging, it has not been applied to3-dimension reservoir simulation. Therefore, the study of fast forward and inverse method of 3-dimension reservoir simulation is a cutting-edge problem, takes on important realistic signification and application value. In this dissertation, 2-dimension and 3-dimension fluid equations in porous media are discretized by finite difference, obtaining finite difference equations to meet the inner boundary conditions by Peaceman's equations, giving successive over relaxation iteration of 3-dimension fluid equations in porous media and the dimensional analysis. Several equation-solving methods are compared in common use, analyzing its convergence and convergence rate. The alternating direction implicit procedure of 2-dimension has been turned into successive over relaxation iteration of alternating direction implicit procedure of 3-dimension fluid equations in porous media, which possesses the virtues of fast computing speed, needing small memory of computer, good adaptability for heterogeneous media and fast convergence rate. The geological model of channel-sandy reservoir has been generated with the help of stochastic simulation technique, whose cross sections of channel-sandy reservoir are parabolic shapes. This method makes the hard data commendably meet, very suit for geological modeling of containing complex boundary surface reservoir. To verify reliability of the method, theoretical solution and numerical solution are compared by simplifying model of 3-dimension fluid equations in porous media, whose results show that the only difference of the two pressure curves is that the numerical solution is lower than theoretical at the wellbore in the same space. It proves that using finite difference to solve fluid equations in porous media is reliable. As numerical examples of 3-dimension heterogeneous reservoir of the single-well and multi-well, the pressure distributions have been computed respectively, which show the pressure distributions there are clearly difference as difference of the permeabilities is greater than one order of magnitude, otherwise there are no clearly difference. As application, the pressure distribution of the channel-sandy reservoir have been computed, which indicates that the space distribution of pressure strongly relies on the direction of permeability, and is sensitive for space distributions of permeability. In this dissertation, the Peaceman's equations have been modified into solving vertical well problem and horizontal well problem simultaneously. In porous media, a 3D layer reservoir in which contain vertical wells and horizontal wells has been calculated with iteration. For channel-sandy reservoir in which there are also vertical wells and horizontal wells, a 3D transient heterogeneous fluid equation has been discretized. As an example, the space distribution of pressure has been calculated with iteration. The results of examples are accord with the fact, which shows the modification of Peaceman's equation is correct. The problem has been solved in the space where there are vertical and horizontal wells. In the dissertation, the nonuniform grid permeability integration equation upscaling method, the nonuniform grid 2D flow rate upscaling method and the nonuniform grid 3D flow rate upscaling method have been studied respectively. In those methods, they enhance computing speed greatly, but the computing speed of 3D flow rate upscaling method is faster than that of 2D flow rate upscaling method, and the precision of 3D flow rate upscaling method is better than that of 2D flow rate upscaling method. The results also show that the solutions of upscaling method are very approximating to that of fine grid blocks. In this paper, 4 methods of fast adaptive nonuniform grid upscaling method of 3D fluid equations in porous media have been put forward, and applied to calculate 3D heterogeneous reservoir and channel-sandy reservoir, whose computing results show that the solutions of nonuniform adaptive upscaling method of 3D heterogeneous fluid equations in porous media are very approximating to that of fine grid blocks in the regions the permeability or porosity being abnormity and very approximating to that of coarsen grid blocks in the other region, however, the computing speed of adaptive upscaling method is 100 times faster than that of fine grid block method. The formula of sensitivity coefficients are derived from initial boundary value problems of fluid equations in porous media by Green's reciprocity principle. The sensitivity coefficients of wellbore pressure to permeability parameters are given by Peaceman's equation and calculated by means of numerical calculation method of 3D transient anisotropic fluid equation in porous media and verified by direct method. The computing results are in excellent agreement with those obtained by the direct method, which shows feasibility of the method. In the dissertation, the calculating examples are also given for 3D reservoir, channel-sandy reservoir and 3D multi-well reservoir, whose numerical results indicate: around the well hole, the value of the sensitivity coefficients of permeability is very large, the value of the sensitivity coefficients of porosity is very large too, but the sensitivity coefficients of porosity is much less than the sensitivity coefficients of permeability, so that the effect of the sensitivity coefficients of permeability for inversion of reservoir parameters is much greater than that of the sensitivity coefficients of porosity. Because computing the sensitivity coefficients needs to call twice the program of reservoir simulation in one iteration, realizing inversion of reservoir parameters must be sustained by the fast forward method. Using the sensitivity coefficients of permeability and porosity, conditioned on observed valley erosion thickness in wells (hard data), the inversion of the permeabilities and porosities in the homogeneous reservoir, homogeneous reservoir only along the certain direction and block reservoir are implemented by Gauss-Newton method or conjugate gradient method respectively. The results of our examples are very approximating to the real data of permeability and porosity, but the convergence rate of conjugate gradient method is much faster than that of Gauss-Newton method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article is an important part of "95" technological subject of SINOPEC. It has a large number of difficulties and workloads, and has significant theoretical meanings and practical value. The study area is composed of sandstone & conglomerate reservoir of alluvial fan & fan delta, which belong to Sha3 lower member and Sha4 upper member of lower tertiary of Yong'an Town Oilfield in Dongying Depression. The target stataum develops in the hanging wall of the synsedimentary fault in the scarp zone of Dongying Depression. The frequently intense movements result in the variation of sandstone and conglomerate reservoir and the evolution of the time and space of Sha3 lower member and Sha4 upper member in Yong'an Town Oilfield. As a result, it is difficult for the individual reservoir correlation at the root of fan, which bring about a tackle problem for the exploitation of oilfield. In this background, the research of fluid units will be more difficult. In this article, the new concepts, the new methods, and the new techniques of sedimentology, petroleum geology, reservoir geology, physics of crystal surface, dynamic & static state reservoir description and well logging geology are synthetically applied, and the computer technology are made full uses of, and the identifying, dividing and appraising of the two-formation-type sandstone & conglomerate reservoir fluid units of Sha3 lower member and Sha4 upper member systemically analyzed in Yong'an Town Oilfield, Dongying Depression. For the first time, the single-well model, the section model, the plane model, the nuclear magnetism log model, the microcosmic network model, the 4-D geology model and the simulation model of the two-formation-type reservoir fluid units of the of sandstone & conglomerate reservoir of Sha3 lower member and Sha4 upper member are established, and the formative mechanism and distributing & enrichment laws of oil-gas of the two type of sandstone and conglomerate reservoir fluid units are revealed. This article established the optimizing, identifying, classifying and appraising standard of the two-formation-type reservoir fluid units of the of sandstone and conglomerate reservoir of Sha3 lower member and Sha4 upper member, which settles the substantial foundations for static state model of the fluid units, reveals the macroscopic & microcosmic various laws of geometrical static state of the fluid units, and instructs the oil exploitation. This article established static state model of the two-formation-type sandstone and conglomerate reservoir fluid units by using the multi-subject theories, information and techniques, and reveals the geometrical configuration, special distribution and the oil-gas enrichment laws of the sandstone and conglomerate reservoir fluid units. For the first time, we established the nuclear magnetism log model of the two-formation-type sandstone and conglomerate reservoir of Sha3 lower member and Sha4 upper member, which reveals not only the character and distributing laws of the porosity and permeability, bat also the formation and distribution of the movable fluid. It established six type of microcosmic net model of the two-formation-type sandstone and conglomerate reservoir of Sha3 lower member and Sha4 upper member in the working area by using the advanced theories, such as rock thin section, SEM, image analysis, intrusive mercury, mold, rock C.T. measure & test image etc., which reveals the microcosmic characteristic of porosity & throat, filterate mode and microcosmic oil-gas enrichment laws of the sandstone and conglomerate reservoir. For the first time, it sets up the 4-D model and mathematic model of the sandstone and conglomerate reservoir, which reveals the distributing and evolving laws of macroscopic & microcosmic parameters of the two-formation-type sandstone and conglomerate reservoir and oil-gas in 4-D space. At the same time, it also forecasts the oil-gas distribution and instructs the oilfield exploitation. It established reservoir simulation model, which reveals the filterate character and distributing laws of oil-gas in different porosity & throat net models. This article established the assistant theories and techniques for researching, describing, indicating and forecasting the sandstone and conglomerate reservoir fluid units, and develops the theories and techniques of the land faces faulted basin exploitation geology. In instructing oilfield exploitation, it had won the notable economic & social benefits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The discovery of the highly productive Renqiu buried hill reservoir in Bohai Bay Basin in 1975 started the high tide of finding buried hill reservoirs in China and their research. As the advance of E&P technologies, the study of buried hill reservoir in China had a qualitative leap. The reservoir description and some other aspects of development have reached or approached to the international leading level. However, some core techniques for reservoir study such as structure & faulting system study, formation prediction and connection study and heterogeneous model's construction could not completely carry out the quantitative or accurate reservoir description, e. g. the areal distribution of porosity, permeability and oil saturation. Especially, the modeling for reservoir simulation is still wandering in the stage of simplicity. The inaccurate understanding of geology could not derive 3D heterogeneous geological model that can reveal the actual underground situation thus could not design practical and feasible oilfield development plan. Therefore, the problems of low oil recovery rate, low recovery factor and poor development effectiveness have not been solved. The poor connection of the reservoir determined that waterflooding could not get good development effect and the production had to depend on the reservoir elastic energy, and this will bring big difficulty for development modification and improvement of oil recovery. This study formed a series of techniques for heterogeneous model research that can be used to construct heterogeneous model consistent with the reservoir geology. Thus the development effectiveness, success ratio of drilling and percent of producing reserves can be enhanced. This study can make the development of buried hill reservoir be of high recovery rate and high effect. The achievements of this study are as follows: 1. Evaluated the resources, summarized the geological characteristics and carried out the reservoir classification of the buried hill reservoirs in Shengli petroliferous area; 2. Established the markers for stratigraphical correlation and formed the correlation method for complex buried hill reservoirs; 3. Analyzed the structural features of the buried hill reservoirs, finished the structure interpretation and study of faulting system using synthetic seismograms, horizontal slices and coherent analysis, and clarified structural development history of the buried hill reservoirs in Shengli petroliferous area; 4. Determined the 3 classes and 7 types of pore space and the main pore space type, the logging response characteristics and the FMI logging identified difference between artificial and natural fractures by the comprehensive usage of core analysis, other lab analyses, conventional logging, FMI logging and CMR logging; 5. Determined the factors controlled the growth of the fractures, vugs and cavities, proposed the main formation prediction method for buried hill reservoir and analyzed their technical principium and applicability, and formed the seismic method and process for buried hill reservoir description; 6. Established the reserve calculation method for buried hill reservoirs, i. e. the reserves of fractures and matrix are calculated separately; the recoverable reserves are calculated by decline method and are classified by the SPE criteria; 7. Studied restraining barriers and the sealing of the faults thus clarified the oil-bearing formations of the buried hill reservoirs, and verified the multiple reservoir forming theory; 8. Formed reasonable procedure of buried hill reservoir study; 9. Formed the 3 D modeling technology for buried hill reservoirs; 10. Studied a number of buried hill blocks on the aspects of reservoir description, reservoir engineering and development plan optimization based on the above research and the profit and social effect are remarkable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The grid is a foundation of reservoir description and reservoir simulation. The scale of grid size is vital influence for the precision of reservoir simulation the gridding of reservoir parameters require reasonable interpolation method with computing quickly and accurately. The improved distant weighted interpolation method has many properties, such as logical data points selection, exact interpolation, less calculation and simply programming, and its application can improve the precision of reservoir description and reservoir simulation. The Fractal geologic statistics describes scientifically the distribution law of various geological properties in reservoir. The Fractal interpolation method is applied in grid interpolation of reservoir parameters, and the result more accorded with the geological property and configuration of reservoir, and improved the rationality and quality of interpolation calculation. Incorporating the improved distant weighted interpolation method with Fractal interpolation method during mathematical model of grid-upscaling and grid-downscaling, the softwares of GROUGH(grid-upscaling) and GFINE (grid-downscaling) were developed aiming at the questions of grid-upscaling and grid-downscaling in reservoir description and reservoir simulation. The softwares of GROUGH and GFINE initial applied in the research of fined and large-scale reservoir simulation. It obtained fined distribution of remaining oil applying grid-upscaling and grid-downscaling technique in fined reservoir simulation of Es21-2 Shengtuo oilfield, and provided strongly and scientific basis for integral and comprehensive adjustment. It's a giant tertiary oil recovery pilot area in the alkaline/surfactant/polymer flooding pilot area of west district of Gudao oilfield, and first realized fined reservoir simulation of chemical flooding using grid-upscaling and grid-downscaling technique. It has wide applied foreground and significant research value aiming at the technique of grid-upscaling and grid-downscaling in reservoir description and reservoir simulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The behavior of the fluid flux in oil fields is influenced by different factors and it has a big impact on the recovery of hydrocarbons. There is a need of evaluating and adapting the actual technology to the worldwide reservoirs reality, not only on the exploration (reservoir discovers) but also on the development of those that were already discovered, however not yet produced. The in situ combustion (ISC) is a suitable technique for these recovery of hydrocarbons, although it remains complex to be implemented. The main objective of this research was to study the application of the ISC as an advanced oil recovery technique through a parametric analysis of the process using vertical wells within a semi synthetic reservoir that had the characteristics from the brazilian northwest, in order to determine which of those parameters could influence the process, verifying the technical and economical viability of the method on the oil industry. For that analysis, a commercial reservoir simulation program for thermal processes was used, called steam thermal and advanced processes reservoir simulator (STARS) from the computer modeling group (CMG). This study aims, through the numerical analysis, find results that help improve mainly the interpretation and comprehension of the main problems related to the ISC method, which are not yet dominated. From the results obtained, it was proved that the mediation promoted by the thermal process ISC over the oil recovery is very important, with rates and cumulated production positively influenced by the method application. It was seen that the application of the method improves the oil mobility as a function of the heating when the combustion front forms inside the reservoir. Among all the analyzed parameters, the activation energy presented the bigger influence, it means, the lower the activation energy the bigger the fraction of recovered oil, as a function of the chemical reactions speed rise. It was also verified that the higher the enthalpy of the reaction, the bigger the fraction of recovered oil, due to a bigger amount of released energy inside the system, helping the ISC. The reservoir parameters: porosity and permeability showed to have lower influence on the ISC. Among the operational parameters that were analyzed, the injection rate was the one that showed a stronger influence on the ISC method, because, the higher the value of the injection rate, the higher was the result obtained, mainly due to maintaining the combustion front. In connection with the oxygen concentration, an increase of the percentage of this parameter translates into a higher fraction of recovered oil, because the quantity of fuel, helping the advance and the maintenance of the combustion front for a longer period of time. About the economic analysis, the ISC method showed to be economically feasible when evaluated through the net present value (NPV), considering the injection rates: the higher the injection rate, the higher the financial incomes of the final project