944 resultados para Replication Invariance
Resumo:
Full Text / Article complet
Resumo:
Full Text / Article complet
Resumo:
We consider the problem of allocating an infinitely divisible commodity among a group of agents with single-peaked preferences. A rule that has played a central role in the analysis of the problem is the so-called uniform rule. Chun (2001) proves that the uniform rule is the only rule satisfying Pareto optimality, no-envy, separability, and continuity (with respect to the social endowment). We obtain an alternative characterization by using a weak replication-invariance condition, called duplication-invariance, instead of continuity. Furthermore, we prove that Pareto optimality, equal division lower bound, and separability imply no-envy. Using this result, we strengthen one of Chun's (2001) characterizations of the uniform rule by showing that the uniform rule is the only rule satisfying Pareto optimality, equal división lower bound, separability, and either continuity or duplication-invariance.
Resumo:
En la primera parte del presente trabajo se investigan diferentes formas de cálculo de la razón de concentración conocida como Coeficiente o Índice de Gini, y el no cumplimiento del axioma conocido como de "invariancia a la replicación" o "Principio de Población de Dalton" en algunas de ellas. El alcance de las conclusiones se limita al comportamiento de las fórmulas sometidas a prueba (se encuentran entre las más conocidas) cuando son aplicadas a distribuciones de datos desagregados. En la segunda parte se propone un factor de corrección para las fórmulas de cálculo analizadas, de manera que satisfagan el Principio de Población.
Resumo:
En la primera parte del presente trabajo se investigan diferentes formas de cálculo de la razón de concentración conocida como Coeficiente o Índice de Gini, y el no cumplimiento del axioma conocido como de "invariancia a la replicación" o "Principio de Población de Dalton" en algunas de ellas. El alcance de las conclusiones se limita al comportamiento de las fórmulas sometidas a prueba (se encuentran entre las más conocidas) cuando son aplicadas a distribuciones de datos desagregados. En la segunda parte se propone un factor de corrección para las fórmulas de cálculo analizadas, de manera que satisfagan el Principio de Población.
Resumo:
En la primera parte del presente trabajo se investigan diferentes formas de cálculo de la razón de concentración conocida como Coeficiente o Índice de Gini, y el no cumplimiento del axioma conocido como de "invariancia a la replicación" o "Principio de Población de Dalton" en algunas de ellas. El alcance de las conclusiones se limita al comportamiento de las fórmulas sometidas a prueba (se encuentran entre las más conocidas) cuando son aplicadas a distribuciones de datos desagregados. En la segunda parte se propone un factor de corrección para las fórmulas de cálculo analizadas, de manera que satisfagan el Principio de Población.
Resumo:
En la primera parte del presente trabajo se investigan diferentes formas de cálculo de la razón de concentración conocida como Coeficiente o Índice de Gini, y el no cumplimiento del axioma conocido como de "invariancia a la replicación" o "Principio de Población de Dalton" en algunas de ellas. El alcance de las conclusiones se limita al comportamiento de las fórmulas sometidas a prueba (se encuentran entre las más conocidas) cuando son aplicadas a distribuciones de datos desagregados. En la segunda parte se propone un factor de corrección para las fórmulas de cálculo analizadas, de manera que satisfagan el Principio de Población.
Resumo:
An extension of the uniform invariance principle for ordinary differential equations with finite delay is developed. The uniform invariance principle allows the derivative of the auxiliary scalar function V to be positive in some bounded sets of the state space while the classical invariance principle assumes that. V <= 0. As a consequence, the uniform invariance principle can deal with a larger class of problems. The main difficulty to prove an invariance principle for functional differential equations is the fact that flows are defined on an infinite dimensional space and, in such spaces, bounded solutions may not be precompact. This difficulty is overcome by imposing the vector field taking bounded sets into bounded sets.
Resumo:
Background: HIV-1-infected individuals who spontaneously control viral replication represent an example of successful containment of the AIDS virus. Understanding the anti-viral immune responses in these individuals may help in vaccine design. However, immune responses against HIV-1 are normally analyzed using HIV-1 consensus B 15-mers that overlap by 11 amino acids. Unfortunately, this method may underestimate the real breadth of the cellular immune responses against the autologous sequence of the infecting virus. Methodology and Principal Findings: Here we compared cellular immune responses against nef and vif-encoded consensus B 15-mer peptides to responses against HLA class I-predicted minimal optimal epitopes from consensus B and autologous sequences in six patients who have controlled HIV-1 replication. Interestingly, our analysis revealed that three of our patients had broader cellular immune responses against HLA class I-predicted minimal optimal epitopes from either autologous viruses or from the HIV-1 consensus B sequence, when compared to responses against the 15-mer HIV-1 type B consensus peptides. Conclusion and Significance: This suggests that the cellular immune responses against HIV-1 in controller patients may be broader than we had previously anticipated.
Resumo:
We searched for a sidereal modulation in the MINOS far detector neutrino rate. Such a signal would be a consequence of Lorentz and CPT violation as described by the standard-model extension framework. It also would be the first detection of a perturbative effect to conventional neutrino mass oscillations. We found no evidence for this sidereal signature, and the upper limits placed on the magnitudes of the Lorentz and CPT violating coefficients describing the theory are an improvement by factors of 20-510 over the current best limits found by using the MINOS near detector.
Resumo:
The possibility of having a gauge fixing term in the effective Lagrangian that is not a quadratic expression has been explored in spin-two theories so as to have a propagator that is both traceless and transverse. We first show how this same approach can be used in spontaneously broken gauge theories as an alternate to the 't Hooft gauge fixing which avoids terms quadratic in the scalar fields. This ""nonquadratic"" gauge fixing in the effective action results in two complex fermionic and one real bosonic ghost field. A global gauge invariance involving a fermionic gauge parameter, analogous to the usual Becchi-Rouet-Stora-Tyutin invariance, is present in this effective action.
Resumo:
A search for a sidereal modulation in the MINOS near detector neutrino data was performed. If present, this signature could be a consequence of Lorentz and CPT violation as predicted by the effective field theory called the standard-model extension. No evidence for a sidereal signal in the data set was found, implying that there is no significant change in neutrino propagation that depends on the direction of the neutrino beam in a sun-centered inertial frame. Upper limits on the magnitudes of the Lorentz and CPT violating terms in the standard-model extension lie between 10(-4) and 10(-2) of the maximum expected, assuming a suppression of these signatures by a factor of 10(-17).
Resumo:
We consider a model of classical noncommutative particle in an external electromagnetic field. For this model, we prove the existence of generalized gauge transformations. Classical dynamics in Hamiltonian and Lagrangian form is discussed; in particular, the motion in the constant magnetic field is studied in detail. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3299296]
Resumo:
Twisted quantum field theories on the Groenewold-Moyal plane are known to be nonlocal. Despite this nonlocality, it is possible to define a generalized notion of causality. We show that interacting quantum field theories that involve only couplings between matter fields, or between matter fields and minimally coupled U(1) gauge fields are causal in this sense. On the other hand, interactions between matter fields and non-Abelian gauge fields violate this generalized causality. We derive the modified Feynman rules emergent from these features. They imply that interactions of matter with non-Abelian gauge fields are not Lorentz- and CPT-invariant.