4 resultados para Renorming
Resumo:
∗ The present article was originally submitted for the second volume of Murcia Seminar on Functional Analysis (1989). Unfortunately it has been not possible to continue with Murcia Seminar publication anymore. For historical reasons the present vesion correspond with the original one.
Resumo:
The aim of our present note is to show the strength of the existence of an equivalent analytic renorming of a Banach space, even compared to C∞-Fréchet smooth renormings. It was Haydon who first showed in [8] that C(K) spaces for K countable admit an equivalent C∞-Fréchet smooth norm. Later, in [7] and [9] he introduced a large clams of tree-like (uncountable) compacts K for which C(K) admits an equivalent C∞-Fréchet smooth norm. Recently, it was shown in [3] that C(K) spaces for K countable admit an equivalent analytic norm. Our Theorem 1 shows that in the class of C(K) spaces this result is the best possible.
Resumo:
We give a new construction of uniformly convex norms with a power type modulus on super-reflexive spaces based on the notion of dentability index. Furthermore, we prove that if the Szlenk index of a Banach space is less than or equal to ω (first infinite ordinal) then there is an equivalent weak* lower semicontinuous positively homogeneous functional on X* satisfying the uniform Kadec-Klee Property for the weak*-topology (UKK*). Then we solve the UKK or UKK* renorming problems for Lp(X) spaces and C(K) spaces for K scattered compact space.
Resumo:
2000 Mathematics Subject Classification: Primary: 46B03, 46B26. Secondary: 46E15, 54C35.