26 resultados para Renormalização


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modelos com interações quárticas fermiônicas tem sido estudadas para clarificar aspectos conceituais e possíveis aplicações em teoria quântica de campos. Neste trabalho apresentamos a estrutura do grupo de renormalização no modelo de Nambu-Jona-Lasinio até a ordem de 1-loop. O modelo é não renormalizável perturbativamente, no sentido usual de contagem de potência, mas é tratado como uma teoria efetiva, válida numa escala de energia onde p << ^, sendo p o momento externo do loop e ^ um parâmetro de escala de massa que caracteriza o acoplamento do vértice não renormalizável. Esclarecemos a estrutura tensorial dos vértices de interação e calculamos as funções do grupo de renormalização. A análise dos pontos fixos da teoria também é apresentada e discutida usando o formalismo de redução das constantes de acoplamento proposto por Zimmermann. Encontramos a baixas eneergias a origem como ponto fixo infravermelho estável e um ponto fixo não trivial ultravioleta estável, indicando a consistência perturbativa se o momento é pequeno.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Física - IGCE

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os aspectos quânticos de teorias de campo formuladas no espaço-tempo não comutativo têm sido amplamente estudados ao longo dos anos. Um dos principais aspectos é o que na literatura ficou conhecido como mixing IR/UV. Trata-se de uma mistura das divergências, que foi vista pela primeira vez no trabalho de Minwalla et al [28], onde num estudo do campo escalar não comutativo com interação quártica vemos já a 1 loop que o tadpole tem uma divergência UV associada a sua parte planar e, junto com ela, temos uma divergência IR associada com um gráfico não planar. Essa mistura torna a teoria não renormalizável. Dado tal problema, houve então uma busca por mecanismos que separassem essas divergências a fim de termos teorias renormalizáveis. Um mecanismo proposto foi a adição de um termo não local na ação U*(1) para que esta seja estável.Neste trabalho, estudamos através da renormalização algébrica a estabilidade deste modelo. Para tal, precisamos localizar o operador não local através de campos auxiliares e seus respectivos ghosts (metodo de Zwanziger) na intenção de retirar os graus de liberdade indesejados que surgem. Usamos o approachda quebra soft de BRST para analisar o termo que quebra BRST, que consiste em reescrevermos tal termo com o auxílio de fontes externas que num determinado limite físico voltam ao termo original.Como resultado, vimos que a teoria com a adição deste termo na ação só é renormalizável se tivermos que introduzir novos termos, sendo alguns deles quárticos. Porém, estes termos mudam a forma do propagador, que não desacopla as divergências. Um outro aspecto que podemos salientar é que, dependendo da escolha de alguns parâmetros, o propagador dá indícios de termos um fótonconfinante, seguindo o critério de Wilson e o critério da perda da positividade do propagador.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo desta dissertação é apresentar uma conexão entre a condição de Gribov-Zwanziger para o gap de massa e o mecanismo de quebra espontânea de simetria, através do estudo de um operador composto introduzido numa maneira localizada. Para tornar esta relação mais clara, um modelo é apresentado e alguns aspectos quânticos são discutidos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O processo de recuperação secundária de petróleo é comumente realizado com a injeção de água ou gás no reservatório a fim de manter a pressão necessária para sua extração. Para que o investimento seja viável, os gastos com a extração precisam ser menores do que o retorno financeiro obtido com a produção de petróleo. Objetivando-se estudar possíveis cenários para o processo de exploração, costuma-se utilizar simulações dos processos de extração. As equações que modelam esse processo de recuperação são de caráter hiperbólico e não lineares, as quais podem ser interpretadas como Leis de Conservação, cujas soluções são complexas por suas naturezas descontínuas. Essas descontinuidades ou saltos são conhecidas como ondas de choque. Neste trabalho foi abordada uma análise matemática para os fenômenos oriundos de leis de conservação, para em seguida utilizá-la no entendimento do referido problema. Foram estudadas soluções fracas que, fisicamente, podem ser interpretadas como ondas de choque ou rarefação, então, para que fossem distinguidas as fisicamente admissíveis, foi considerado o princípio de entropia, nas suas diversas formas. As simulações foram realizadas nos âmbitos dos escoamentos bifásicos e trifásicos, em que os fluidos são imiscíveis e os efeitos gravitacionais e difusivos, devido à pressão capilar, foram desprezados. Inicialmente, foi feito um estudo comparativo de resoluções numéricas na captura de ondas de choque em escoamento bifásico água-óleo. Neste estudo destacam-se o método Composto LWLF-k, o esquema NonStandard e a introdução da nova função de renormalização para o esquema NonStandard, onde obteve resultados satisfatórios, principalmente em regiões onde a viscosidade do óleo é muito maior do que a viscosidade da água. No escoamento bidimensional, um novo método é proposto, partindo de uma generalização do esquema NonStandard unidimensional. Por fim, é feita uma adaptação dos métodos LWLF-4 e NonStandard para a simulação em escoamentos trifásicos em domínios unidimensional. O esquema NonStandard foi considerado mais eficiente nos problemas abordados, uma vez que sua versão bidimensional mostrou-se satisfatória na captura de ondas de choque em escoamentos bifásicos em meios porosos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Correntes permanentes em anéis mesoscópicos imersos num campo magnético constante foram pela primeira vez observadas experimentalmente em 1990, apresentando intensidades entre uma a duas ordens de grandeza superiores aos valores previstos teoricamente, uma discrepância que permanece por resolver. Neste trabalho apresenta-se um estudo em que se considera um modelo com uma impureza e interações repulsivas entre os eletrões do anel. Através da transformação de Jordan-Wigner obtém-se o hamiltoneano XXZ para cadeias de spin 1/2, com um defeito de troca e condições de fronteira “torcidas”. Utilizando o algoritmo do Grupo de Renormalização da Matriz Densidade (DMRG) estudamos os coeficientes de Fourier da corrente permanente e do respetivo peso de Drude em função da intensidade das interações e do tamanho do anel. Observamos que a amplitude da corrente permanente e o valor do peso de Drude são sempre diminuídos pelas interações.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pair contact process - PCP is a nonequilibrium stochastic model which, like the basic contact process - CP, exhibits a phase transition to an absorbing state. While the absorbing state CP corresponds to a unique configuration (empty lattice), the PCP process infinitely many. Numerical and theoretical studies, nevertheless, indicate that the PCP belongs to the same universality class as the CP (direct percolation class), but with anomalies in the critical spreading dynamics. An infinite number of absorbing configurations arise in the PCP because all process (creation and annihilation) require a nearest-neighbor pair of particles. The diffusive pair contact process - PCPD) was proposed by Grassberger in 1982. But the interest in the problem follows its rediscovery by the Langevin description. On the basis of numerical results and renormalization group arguments, Carlon, Henkel and Schollwöck (2001), suggested that certain critical exponents in the PCPD had values similar to those of the party-conserving - PC class. On the other hand, Hinrichsen (2001), reported simulation results inconsistent with the PC class, and proposed that the PCPD belongs to a new universality class. The controversy regarding the universality of the PCPD remains unresolved. In the PCPD, a nearest-neighbor pair of particles is necessary for the process of creation and annihilation, but the particles to diffuse individually. In this work we study the PCPD with diffusion of pair, in which isolated particles cannot move; a nearest-neighbor pair diffuses as a unit. Using quasistationary simulation, we determined with good precision the critical point and critical exponents for three values of the diffusive probability: D=0.5 and D=0.1. For D=0.5: PC=0.89007(3), β/v=0.252(9), z=1.573(1), =1.10(2), m=1.1758(24). For D=0.1: PC=0.9172(1), β/v=0.252(9), z=1.579(11), =1.11(4), m=1.173(4)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The usual Ashkin-Teller (AT) model is obtained as a superposition of two Ising models coupled through a four-spin interaction term. In two dimension the AT model displays a line of fixed points along which the exponents vary continuously. On this line the model becomes soluble via a mapping onto the Baxter model. Such richness of multicritical behavior led Grest and Widom to introduce the N-color Ashkin-Teller model (N-AT). Those authors made an extensive analysis of the model thus introduced both in the isotropic as well as in the anisotropic cases by several analytical and computational methods. In the present work we define a more general version of the 3-color Ashkin-Teller model by introducing a 6-spin interaction term. We investigate the corresponding symmetry structure presented by our model in conjunction with an analysis of possible phase diagrams obtained by real space renormalization group techniques. The phase diagram are obtained at finite temperature in the region where the ferromagnetic behavior is predominant. Through the use of the transmissivities concepts we obtain the recursion relations in some periodical as well as aperiodic hierarchical lattices. In a first analysis we initially consider the two-color Ashkin-Teller model in order to obtain some results with could be used as a guide to our main purpose. In the anisotropic case the model was previously studied on the Wheatstone bridge by Claudionor Bezerra in his Master Degree dissertation. By using more appropriated computational resources we obtained isomorphic critical surfaces described in Bezerra's work but not properly identified. Besides, we also analyzed the isotropic version in an aperiodic hierarchical lattice, and we showed how the geometric fluctuations are affected by such aperiodicity and its consequences in the corresponding critical behavior. Those analysis were carried out by the use of appropriated definitions of transmissivities. Finally, we considered the modified 3-AT model with a 6-spin couplings. With the inclusion of such term the model becomes more attractive from the symmetry point of view. For some hierarchical lattices we derived general recursion relations in the anisotropic version of the model (3-AAT), from which case we can obtain the corresponding equations for the isotropic version (3-IAT). The 3-IAT was studied extensively in the whole region where the ferromagnetic couplings are dominant. The fixed points and the respective critical exponents were determined. By analyzing the attraction basins of such fixed points we were able to find the three-parameter phase diagram (temperature £ 4-spin coupling £ 6-spin coupling). We could identify fixed points corresponding to the universality class of Ising and 4- and 8-state Potts model. We also obtained a fixed point which seems to be a sort of reminiscence of a 6-state Potts fixed point as well as a possible indication of the existence of a Baxter line. Some unstable fixed points which do not belong to any aforementioned q-state Potts universality class was also found

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we study the phase transitions of the ferromagnetic three-color Ashkin-Teller Model in the hierarquical lattice generated by the Wheatstone bridge using real space renormalization group approach. With such technique we obtain the phase diagram and its critical points with respective critical exponents v. This model presents four phases: ferromagnetic, paramagnetic and two intermediates. Nine critical points were found, three of which are of Ising model type, three are of four states Potts model type, one is of eight states Potts model type and the last two which do not correspond to any Potts model with integer number of states. iv

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we study a connection between a non-Gaussian statistics, the Kaniadakis statistics, and Complex Networks. We show that the degree distribution P(k)of a scale free-network, can be calculated using a maximization of information entropy in the context of non-gaussian statistics. As an example, a numerical analysis based on the preferential attachment growth model is discussed, as well as a numerical behavior of the Kaniadakis and Tsallis degree distribution is compared. We also analyze the diffusive epidemic process (DEP) on a regular lattice one-dimensional. The model is composed of A (healthy) and B (sick) species that independently diffusive on lattice with diffusion rates DA and DB for which the probabilistic dynamical rule A + B → 2B and B → A. This model belongs to the category of non-equilibrium systems with an absorbing state and a phase transition between active an inactive states. We investigate the critical behavior of the DEP using an auto-adaptive algorithm to find critical points: the method of automatic searching for critical points (MASCP). We compare our results with the literature and we find that the MASCP successfully finds the critical exponents 1/ѵ and 1/zѵ in all the cases DA =DB, DA DB. The simulations show that the DEP has the same critical exponents as are expected from field-theoretical arguments. Moreover, we find that, contrary to a renormalization group prediction, the system does not show a discontinuous phase transition in the regime o DA >DB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A real space renormalization group method is used to investigate the criticality (phase diagrams, critical expoentes and universality classes) of Z(4) model in two and three dimensions. The values of the interaction parameters are chosen in such a way as to cover the complete phase diagrams of the model, which presents the following phases: (i) Paramagnetic (P); (ii) Ferromagnetic (F); (iii) Antiferromagnetic (AF); (iv) Intermediate Ferromagnetic (IF) and Intermediate Antiferromagnetic (IAF). In the hierarquical lattices, generated by renormalization the phase diagrams are exact. It is also possible to obtain approximated results for square and simple cubic lattices. In the bidimensional case a self-dual lattice is used and the resulting phase diagram reproduces all the exact results known for the square lattice. The Migdal-Kadanoff transformation is applied to the three dimensional case and the additional phases previously suggested by Ditzian et al, are not found

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diffusive epidemic process (PED) is a nonequilibrium stochastic model which, exhibits a phase trnasition to an absorbing state. In the model, healthy (A) and sick (B) individuals diffuse on a lattice with diffusion constants DA and DB, respectively. According to a Wilson renormalization calculation, the system presents a first-order phase transition, for the case DA > DB. Several researches performed simulation works for test this is conjecture, but it was not possible to observe this first-order phase transition. The explanation given was that we needed to perform simulation to higher dimensions. In this work had the motivation to investigate the critical behavior of a diffusive epidemic propagation with Lévy interaction(PEDL), in one-dimension. The Lévy distribution has the interaction of diffusion of all sizes taking the one-dimensional system for a higher-dimensional. We try to explain this is controversy that remains unresolved, for the case DA > DB. For this work, we use the Monte Carlo Method with resuscitation. This is method is to add a sick individual in the system when the order parameter (sick density) go to zero. We apply a finite size scalling for estimates the critical point and the exponent critical =, e z, for the case DA > DB