970 resultados para Renal injury
Resumo:
Scope: We examined whether dietary supplementation with fish oil modulates inflammation, fibrosis and oxidative stress following obstructive renal injury. Methods and results: Three groups of Sprague-Dawley rats (n = 16 per group) were fed for 4 wk on normal rat chow (oleic acid), chow containing fish oil (33 g eicosapentaenoic acid and 26 g docosahexaenoic acid per kg diet), or chow containing safflower oil (60 g linoleic acid per kg diet). All diets contained 7% fat. After 4 wk, the rats were further subdivided into four smaller groups (n = 4 per group). Unilateral ureteral obstruction was induced in three groups (for 4, 7 and 14 days). The fourth group for each diet did not undergo surgery, and was sacrificed as controls at 14 days. When rats were sacrificed, plasma and portions of the kidneys were removed and frozen; other portions of kidney tissue were fixed and prepared for histology. Compared with normal chow and safflower oil, fish oil attenuated collagen deposition, macrophage infiltration, TGF-beta expression, apoptosis, and tissue levels of arachidonic acid, MIP-1 alpha, IL-1 beta, MCP-1 and leukotriene B(4). Compared with normal chow, fish oil increased the expression of HO-1 protein in kidney tissue. Conclusions: Fish oil intake reduced inflammation, fibrosis and oxidative stress following obstructive renal injury.
Resumo:
Background. Obstructive nephropathy decreases renal blood flow (RBF) and glomerular filtration rate (GFR), causing tubular abnormalities, such as urinary concentrating defect, as well as increasing oxidative stress. This study aimed to evaluate the effects of N-acetylcysteine (NAC) on renal function, as well as on the protein expression of aquaporin 2 (AQP2) and endothelial nitric oxide synthase (eNOS), after the relief of bilateral ureteral obstruction (BUO). Methods. Adult male Wistar rats were divided into four groups: sham (sham operated); sham operated + 440 mg/kg body weight (BW) of NAC daily in drinking water, started 2 days before and maintained until 48 h after the surgery; BUO (24-h BUO only); BUO + NAC-pre (24-h BUO plus 440 mg/kg BW of NAC daily in drinking water started 2 days before BUO); and BUO + NAC-post (24-h BUO plus 440 mg/kg BW of NAC daily in drinking water started on the day of BUO relief). Experiments were conducted 48 h after BUO relief. Results. Serum levels of thiobarbituric reactive substances, which are markers of lipid peroxidation, were significantly lower in NAC-treated rats than in the BUO group rats. The administration of NAC provided significant protection against post-BUO GFR drops and reductions in RBF. Renal cortices and BUO rats presented decreased eNOS protein expression of eNOS in the renal cortex of BUO group rats, whereas it was partially recovered in BUO + NAC-pre group rats. Urine osmolality was significantly lower in BUO rats than in sham group rats or NAC-treated rats, the last also presenting less interstitial fibrosis. Post-BUO downregulation of AQP2 protein expression was averted in the BUO + NAC-pre group rats. Conclusions. This study demonstrates that NAC administration ameliorates the renal function impairment observed 48 h after the relief of 24-h BUO. Oxidative stress is important for the suppression of GFR, RBF, tissue AQP2 and eNOS in the polyuric phase after the release of BUO.
Resumo:
Background. Hyperglycemia is associated with a decreased tolerance to ischemia and an increased severity of renal ischemia reperfusion (I/R) injury. It has been suggested that erythropoietin (EPO) attenuates this effect in normoglycemic animals. This study sought to examine the effects of EPO on treatment renal I/R injury (IRI) in transiently hyperglycemic rats.Material and Methods. Twenty-eight male Wister rats anesthetized with isoflurane received glucose (2.5 g.kg(-1) intraperitoneally) before right nephrectomy. They were randomly assigned to four groups: sham operation (S); IRI (ISO); IRI+EPO, (600 UI kg(-1) low-dose EPO [EL]); and IRI+EPO 5000 UI kg(-1) (high-dose EPO [EH]). IRI was induced by a 25-minute period of left renal ischemia followed by reperfusion for 24 hours. Serum Creatinine and glucose levels were measure at baseline (M1), immediately after the ischemic period (M2), and at 24 hours after reperfusion (M3). After sacrificing the animals, left kidney specimens were submitted for histological analysis including flow cytometry to estimate tubular necrosis and the percentages of apoptotic, dead or intact cells.Results. Scr in the ISO group was significantly higher at M3 than among the other groups. Percentages of early apoptotic cells in ISO group were significantly higher than the other groups. Percentages of late apoptotic cells in S and ISO groups were significantly greater than EL and EH groups. However, no significant intergroup differences were observed regarding the incidence of tubular necrosis.Conclusions. Our results suggested that, although not preventing the occurrence of tubular necrosis, EPO attenuated apoptosis and glomerular functional impairment among transiently hyperglycemic rats undergoing an ischemia/reperfusion insult.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
To evaluate the effect of parecoxib (an NSAID) on renal function by measuring plasma NGAL (serum neutrophil gelatinase-associated lipocalin) levels in an induced-ischemia rat model. METHODS: Forty male Wistar rats were randomly assigned to one of four groups: Ischemia (I), Ischemia/parecoxib (IP), No-ischemia (NI), and No-ischemia/parecoxib (NIP). Body weight, mean arterial pressure, heart rate, body temperature, NGAL levels, and renal histology were compared across groups. RESULTS: The Ischemia (I) group, which did not receive parecoxib, showed the highest NGAL levels (p=0.001), while the IP group, which received the medication, had NGAL levels similar to those of the non-ischemic (NI and NIP) groups. CONCLUSION: Parecoxib resulted in renal protection in this experimental model.
Resumo:
The mechanisms linking obesity to kidney damage are unknown. AGEs are responsible for renal damage in obese individuals. The receptor AGEs (RAGE) contributes to nuclear transcription factors that result in the production of proinflammatory cytokines and this seems to contribute to the development of renal disease. Thus, intervention with antioxidant can have an important effect in the prevention and treatment of pro-oxidant and pro-inflammatory state in the kidneys resulting from obesity.
Resumo:
Erythropoietin (EPO) has recently been shown to exert important cytoprotective and anti-apoptotic effects in experimental brain injury and cisplatin-induced nephrotoxicity. The aim of the present study was to determine whether EPO administration is also renoprotectivein both in vitro and in vivo models ofischaemic acute renal failure Methods. Primary cultures of human proximal tubule cells (PTCs) were exposed to either vehicle or EPO (6.25–400 IU/ml) in the presence of hypoxia (1% O2), normoxia (21% O2) or hypoxia followed by normoxia for up to 24 h. The end-points evaluated included cell apoptosis (morphology and in situ end labelling [ISEL], viability [lactate dehydrogenase (LDH release)], cell proliferation [proliferating cell nuclear antigen (PCNA)] and DNA synthesis (thymidine incorporation). The effects of EPO pre-treatment (5000 U/kg) on renal morphology and function were also studied in rat models of unilateral and bilateral ischaemia–reperfusion (IR) injury. Results. In the in vitro model, hypoxia (1% O2) induced a significant degree of PTC apoptosis, which was substantially reduced by co-incubation with EPO at 24 h (vehicle 2.5±0.5% vs 25 IU/ml EPO 1.8±0.4% vs 200 IU/ml EPO 0.9±0.2%, n = 9, P
Resumo:
Administration of human recombinant erythropoietin ( EPO) at time of acute ischemic renal injury ( IRI) inhibits apoptosis, enhances tubular epithelial regeneration, and promotes renal functional recovery. The present study aimed to determine whether darbepoetin-alfa ( DPO) exhibits comparable renoprotection to that afforded by EPO, whether pro or antiapoptotic Bcl-2 proteins are involved, and whether delayed administration of EPO or DPO 6 h following IRI ameliorates renal dysfunction. The model of IRI involved bilateral renal artery occlusion for 45 min in rats ( N = 4 per group), followed by reperfusion for 1-7 days. Controls were sham-operated. Rats were treated at time of ischemia or sham operation ( T0), or post-treated ( 6 h after the onset of reperfusion, T6) with EPO ( 5000 IU/kg), DPO ( 25 mu g/kg), or appropriate vehicle by intraperitoneal injection. Renal function, structure, and immunohistochemistry for Bcl-2, Bcl-XL, and Bax were analyzed. DPO or EPO at T0 significantly abrogated renal dysfunction in IRI animals ( serum creatinine for IRI 0.17 +/- 0.05mmol/l vs DPO-IRI 0.08 +/- 0.03mmol/l vs EPO-IRI 0.04 +/- 0.01mmol/l, P = 0.01). Delayed administration of DPO or EPO ( T6) also significantly abrogated subsequent renal dysfunction ( serum creatinine for IRI 0.17 +/- 0.05mmol/l vs DPO-IRI 0.06 +/- 0.01mmol/l vs EPO-IRI 0.03 +/- 0.03mmol/l, P = 0.01). There was also significantly decreased tissue injury ( apoptosis, P < 0.05), decreased proapoptotic Bax, and increased regenerative capacity, especially in the outer stripe of the outer medulla, with DPO or EPO at T0 or T6. These results reaffirm the potential clinical application of DPO and EPO as novel renoprotective agents for patients at risk of ischemic acute renal failure or after having sustained an ischemic renal insult.
Resumo:
Ischemia and reperfusion injury (IRI) are mainly caused by leukocyte activation, endothelial dysfunction and production of reactive oxygen species. Moreover, IRI can lead to a systemic response affecting distant organs, such as the lungs. The objective was to study the pulmonary inflammatory systemic response after renal IRI. Male C57Bl/6 mice were subjected to 45 min of bilateral renal ischemia, followed by 4, 6, 12, 24 and 48 h of reperfusion. Blood was collected to measure serum creatinine and cytokine concentrations. Bronchoalveolar lavage fluid (BALF) was collected to determine the number of cells and PGE(2) concentration. Expressions of iNOS and COX-2 in lung were determined by Western blot. Gene analyses were quantified by real time PCR. Serum creatinine increased in the IRI group compared to sham mainly at 24 h after IRI (2.57 +/- A 0.16 vs. 0.43 +/- A 0.07, p < 0.01). The total number of cells in BAL fluid was higher in the IRI group in comparison with sham, 12 h (100 x 10(4) +/- A 15.63 vs. 18.1x10(4) +/- A 10.5, p < 0.05) 24 h (124 x 10(4) +/- A 8.94 vs. 23.2x10(4) +/- A 3.5, p < 0.05) and 48 h (79 x 10(4) +/- A 15.72 vs. 22.2 x 10(4) +/- A 4.2, p < 0.05), mainly by mononuclear cells and neutrophils. Pulmonary COX-2 and iNOS were up-regulated in the IRI group. TNF-alpha, IL-1 beta, MCP-1, KC and IL-6 mRNA expression were up-regulated in kidney and lungs 24 h after renal IRI. ICAM-1 mRNA was up-regulated in lungs 24 h after renal IRI. Serum TNF-alpha, IL-1 beta and MCP-1 and BALF PGE(2) concentrations were increased 24 h after renal IRI. Renal IRI induces an increase of cellular infiltration, up-regulation of COX-2, iNOS and ICAM-1, enhanced chemokine expression and a Th1 cytokine profile in lung demonstrating that the inflammatory response is indeed systemic, possibly leading to an amplification of renal injury.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Caveolae and their proteins, the caveolins, transport macromolecules; compartmentalize signalling molecules; and are involved in various repair processes. There is little information regarding their role in the pathogenesis of significant renal syndromes such as acute renal failure (ARF). In this study, an in vivo rat model of 30 min bilateral renal ischaemia followed by reperfusion times from 4 h to 1 week was used to map the temporal and spatial association between caveolin-1 and tubular epithelial damage (desquamation, apoptosis, necrosis). An in vitro model of ischaemic ARF was also studied, where cultured renal tubular epithelial cells or arterial endothelial cells were subjected to injury initiators modelled on ischaemia-reperfusion (hypoxia, serum deprivation, free radical damage or hypoxia-hyperoxia). Expression of caveolin proteins was investigated using immunohistochemistry, immunoelectron microscopy, and immunoblots of whole cell, membrane or cytosol protein extracts. In vivo, healthy kidney had abundant caveolin-1 in vascular endothelial cells and also some expression in membrane surfaces of distal tubular epithelium. In the kidneys of ARF animals, punctate cytoplasmic localization of caveolin-1 was identified, with high intensity expression in injured proximal tubules that were losing basement membrane adhesion or were apoptotic, 24 h to 4 days after ischaemia-reperfusion. Western immunoblots indicated a marked increase in caveolin-1 expression in the cortex where some proximal tubular injury was located. In vitro, the main treatment-induced change in both cell types was translocation of caveolin-1 from the original plasma membrane site into membrane-associated sites in the cytoplasm. Overall, expression levels did not alter for whole cell extracts and the protein remained membrane-bound, as indicated by cell fractionation analyses. Caveolin-1 was also found to localize intensely within apoptotic cells. The results are indicative of a role for caveolin-1 in ARF-induced renal injury. Whether it functions for cell repair or death remains to be elucidated.
Resumo:
Objectives: To characterize the epidemiology and risk factors for acute kidney injury (AKI) after pediatric cardiac surgery in our center, to determine its association with poor short-term outcomes, and to develop a logistic regression model that will predict the risk of AKI for the study population. Methods: This single-center, retrospective study included consecutive pediatric patients with congenital heart disease who underwent cardiac surgery between January 2010 and December 2012. Exclusion criteria were a history of renal disease, dialysis or renal transplantation. Results: Of the 325 patients included, median age three years (1 day---18 years), AKI occurred in 40 (12.3%) on the first postoperative day. Overall mortality was 13 (4%), nine of whom were in the AKI group. AKI was significantly associated with length of intensive care unit stay, length of mechanical ventilation and in-hospital death (p<0.01). Patients’ age and postoperative serum creatinine, blood urea nitrogen and lactate levels were included in the logistic regression model as predictor variables. The model accurately predicted AKI in this population, with a maximum combined sensitivity of 82.1% and specificity of 75.4%. Conclusions: AKI is common and is associated with poor short-term outcomes in this setting. Younger age and higher postoperative serum creatinine, blood urea nitrogen and lactate levels were powerful predictors of renal injury in this population. The proposed model could be a useful tool for risk stratification of these patients.
Resumo:
Progressive renal failure continues to be a challenge. The use of bone marrow cells represents a means of meeting that challenge. We used lineage-negative (Lin(-)) cells to test the hypothesis that Lin(-) cell treatment decreases renal injury. Syngeneic Fischer 344 rats were divided into four groups: sham ( laparotomy only, untreated); Nx (five-sixth nephrectomy and untreated); NxLC1 (five-sixth nephrectomy and receiving 2 x 10(6) Lin(-) cells on postnephrectomy day 15); and NxLC3 (five-sixth nephrectomy and receiving 2 x 10(6) Lin(-) cells on postnephrectomy days 15, 30, and 45). On postoperative day 16, renal mRNA expression of interleukin (IL)-1 beta, tumor necrosis factor-alpha, and IL-6 was lower in NxLC rats than in Nx rats. On postnephrectomy day 60, NxLC rats presented less proteinuria, glomerulosclerosis, anemia, renal infiltration of immune cells, and protein expression of monocyte chemoattractant protein-1, as well as decreased interstitial area. Immunostaining for proliferating cell nuclear antigen showed that, in comparison with sham rats, Nx rats presented greater cell proliferation, whereas NxLC1 rats and NxLC3 rats presented less cell proliferation than did Nx rats. Protein expression of the cyclin-dependent kinase inhibitor p21 and of vascular endothelial growth factor increased after nephrectomy and decreased after Lin(-) cell treatment. On postnephrectomy day 120, renal function (inulin clearance) was significantly better in Lin(-) cell-treated rats than in untreated rats. Lin(-) cell treatment significantly improved survival. These data suggest that Lin(-) cell treatment protects against chronic renal failure. STEM CELLS 2009; 27: 682-692