935 resultados para Relative entropy
Resumo:
We give an a posteriori analysis of a semidiscrete discontinuous Galerkin scheme approximating solutions to a model of multiphase elastodynamics, which involves an energy density depending not only on the strain but also the strain gradient. A key component in the analysis is the reduced relative entropy stability framework developed in Giesselmann (2014, SIAM J. Math. Anal., 46, 3518–3539). This framework allows energy-type arguments to be applied to continuous functions. Since we advocate the use of discontinuous Galerkin methods we make use of two families of reconstructions, one set of discrete reconstructions and a set of elliptic reconstructions to apply the reduced relative entropy framework in this setting.
Resumo:
We give an a priori analysis of a semi-discrete discontinuous Galerkin scheme approximating solutions to a model of multiphase elastodynamics which involves an energy density depending not only on the strain but also the strain gradient. A key component in the analysis is the reduced relative entropy stability framework developed in Giesselmann (SIAM J Math Anal 46(5):3518–3539, 2014). The estimate we derive is optimal in the L∞(0,T;dG) norm for the strain and the L2(0,T;dG) norm for the velocity, where dG is an appropriate mesh dependent H1-like space.
Resumo:
Nowadays, noninvasive methods of diagnosis have increased due to demands of the population that requires fast, simple and painless exams. These methods have become possible because of the growth of technology that provides the necessary means of collecting and processing signals. New methods of analysis have been developed to understand the complexity of voice signals, such as nonlinear dynamics aiming at the exploration of voice signals dynamic nature. The purpose of this paper is to characterize healthy and pathological voice signals with the aid of relative entropy measures. Phase space reconstruction technique is also used as a way to select interesting regions of the signals. Three groups of samples were used, one from healthy individuals and the other two from people with nodule in the vocal fold and Reinke`s edema. All of them are recordings of sustained vowel /a/ from Brazilian Portuguese. The paper shows that nonlinear dynamical methods seem to be a suitable technique for voice signal analysis, due to the chaotic component of the human voice. Relative entropy is well suited due to its sensibility to uncertainties, since the pathologies are characterized by an increase in the signal complexity and unpredictability. The results showed that the pathological groups had higher entropy values in accordance with other vocal acoustic parameters presented. This suggests that these techniques may improve and complement the recent voice analysis methods available for clinicians. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Soil voids manifest the cumulative effect of local pedogenic processes and ultimately influence soil behavior - especially as it pertains to aeration and hydrophysical properties. Because of the relatively weak attenuation of X-rays by air, compared with liquids or solids, non-disruptive CT scanning has become a very attractive tool for generating three-dimensional imagery of soil voids. One of the main steps involved in this analysis is the thresholding required to transform the original (greyscale) images into the type of binary representation (e.g., pores in white, solids in black) needed for fractal analysis or simulation with Lattice?Boltzmann models (Baveye et al., 2010). The objective of the current work is to apply an innovative approach to quantifying soil voids and pore networks in original X-ray CT imagery using Relative Entropy (Bird et al., 2006; Tarquis et al., 2008). These will be illustrated using typical imagery representing contrasting soil structures. Particular attention will be given to the need to consider the full 3D context of the CT imagery, as well as scaling issues, in the application and interpretation of this index.
Resumo:
A dolgozatban a döntéselméletben fontos szerepet játszó páros összehasonlítás mátrix prioritásvektorának meghatározására új megközelítést alkalmazunk. Az A páros összehasonlítás mátrix és a prioritásvektor által definiált B konzisztens mátrix közötti eltérést a Kullback-Leibler relatív entrópia-függvény segítségével mérjük. Ezen eltérés minimalizálása teljesen kitöltött mátrix esetében konvex programozási feladathoz vezet, nem teljesen kitöltött mátrix esetében pedig egy fixpont problémához. Az eltérésfüggvényt minimalizáló prioritásvektor egyben azzal a tulajdonsággal is rendelkezik, hogy az A mátrix elemeinek összege és a B mátrix elemeinek összege közötti különbség éppen az eltérésfüggvény minimumának az n-szerese, ahol n a feladat mérete. Így az eltérésfüggvény minimumának értéke két szempontból is lehet alkalmas az A mátrix inkonzisztenciájának a mérésére. _____ In this paper we apply a new approach for determining a priority vector for the pairwise comparison matrix which plays an important role in Decision Theory. The divergence between the pairwise comparison matrix A and the consistent matrix B defined by the priority vector is measured with the help of the Kullback-Leibler relative entropy function. The minimization of this divergence leads to a convex program in case of a complete matrix, leads to a fixed-point problem in case of an incomplete matrix. The priority vector minimizing the divergence also has the property that the difference of the sums of elements of the matrix A and the matrix B is n times the minimum of the divergence function where n is the dimension of the problem. Thus we developed two reasons for considering the value of the minimum of the divergence as a measure of inconsistency of the matrix A.
Resumo:
The necessary information to distinguish a local inhomogeneous mass density field from its spatial average on a compact domain of the universe can be measured by relative information entropy. The Kullback-Leibler (KL) formula arises very naturally in this context, however, it provides a very complicated way to compute the mutual information between spatially separated but causally connected regions of the universe in a realistic, inhomogeneous model. To circumvent this issue, by considering a parametric extension of the KL measure, we develop a simple model to describe the mutual information which is entangled via the gravitational field equations. We show that the Tsallis relative entropy can be a good approximation in the case of small inhomogeneities, and for measuring the independent relative information inside the domain, we propose the R\'enyi relative entropy formula.
Resumo:
We present a general framework for discriminative estimation based on the maximum entropy principle and its extensions. All calculations involve distributions over structures and/or parameters rather than specific settings and reduce to relative entropy projections. This holds even when the data is not separable within the chosen parametric class, in the context of anomaly detection rather than classification, or when the labels in the training set are uncertain or incomplete. Support vector machines are naturally subsumed under this class and we provide several extensions. We are also able to estimate exactly and efficiently discriminative distributions over tree structures of class-conditional models within this framework. Preliminary experimental results are indicative of the potential in these techniques.
Resumo:
Sensitivity of output of a linear operator to its input can be quantified in various ways. In Control Theory, the input is usually interpreted as disturbance and the output is to be minimized in some sense. In stochastic worst-case design settings, the disturbance is considered random with imprecisely known probability distribution. The prior set of probability measures can be chosen so as to quantify how far the disturbance deviates from the white-noise hypothesis of Linear Quadratic Gaussian control. Such deviation can be measured by the minimal Kullback-Leibler informational divergence from the Gaussian distributions with zero mean and scalar covariance matrices. The resulting anisotropy functional is defined for finite power random vectors. Originally, anisotropy was introduced for directionally generic random vectors as the relative entropy of the normalized vector with respect to the uniform distribution on the unit sphere. The associated a-anisotropic norm of a matrix is then its maximum root mean square or average energy gain with respect to finite power or directionally generic inputs whose anisotropy is bounded above by a≥0. We give a systematic comparison of the anisotropy functionals and the associated norms. These are considered for unboundedly growing fragments of homogeneous Gaussian random fields on multidimensional integer lattice to yield mean anisotropy. Correspondingly, the anisotropic norms of finite matrices are extended to bounded linear translation invariant operators over such fields.
Resumo:
Arguably, the most difficult task in text classification is to choose an appropriate set of features that allows machine learning algorithms to provide accurate classification. Most state-of-the-art techniques for this task involve careful feature engineering and a pre-processing stage, which may be too expensive in the emerging context of massive collections of electronic texts. In this paper, we propose efficient methods for text classification based on information-theoretic dissimilarity measures, which are used to define dissimilarity-based representations. These methods dispense with any feature design or engineering, by mapping texts into a feature space using universal dissimilarity measures; in this space, classical classifiers (e.g. nearest neighbor or support vector machines) can then be used. The reported experimental evaluation of the proposed methods, on sentiment polarity analysis and authorship attribution problems, reveals that it approximates, sometimes even outperforms previous state-of-the-art techniques, despite being much simpler, in the sense that they do not require any text pre-processing or feature engineering.
Resumo:
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model.
Resumo:
Cette thèse porte sur les questions d'évaluation et de couverture des options dans un modèle exponentiel-Lévy avec changements de régime. Un tel modèle est construit sur un processus additif markovien un peu comme le modèle de Black- Scholes est basé sur un mouvement Brownien. Du fait de l'existence de plusieurs sources d'aléa, nous sommes en présence d'un marché incomplet et ce fait rend inopérant les développements théoriques initiés par Black et Scholes et Merton dans le cadre d'un marché complet. Nous montrons dans cette thèse que l'utilisation de certains résultats de la théorie des processus additifs markoviens permet d'apporter des solutions aux problèmes d'évaluation et de couverture des options. Notamment, nous arrivons à caracté- riser la mesure martingale qui minimise l'entropie relative à la mesure de probabilit é historique ; aussi nous dérivons explicitement sous certaines conditions, le portefeuille optimal qui permet à un agent de minimiser localement le risque quadratique associé. Par ailleurs, dans une perspective plus pratique nous caract érisons le prix d'une option Européenne comme l'unique solution de viscosité d'un système d'équations intégro-di érentielles non-linéaires. Il s'agit là d'un premier pas pour la construction des schémas numériques pour approcher ledit prix.
Resumo:
En esta Tesis se presenta el modelo de Kou, Difusión con saltos doble exponenciales, para la valoración de opciones Call de tipo europeo sobre los precios del petróleo como activo subyacente. Se mostrarán los cálculos numéricos para la formulación de expresiones analíticas que se resolverán mediante la implementación de algoritmos numéricos eficientes que conllevaran a los precios teóricos de las opciones evaluadas. Posteriormente se discutirán las ventajas de usar métodos como la transformada de Fourier por la sencillez relativa de su programación frente a los desarrollos de otras técnicas numéricas. Este método es usado en conjunto con el ejercicio de calibración no paramétrica de regularización, que mediante la minimización de los errores al cuadrado sujeto a una penalización fundamentada en el concepto de entropía relativa, resultaran en la obtención de precios para las opciones Call sobre el petróleo considerando una mejor capacidad del modelo de asignar precios justos frente a los transados en el mercado.
Estado situacional de los modelos basados en agentes y su impacto en la investigación organizacional
Resumo:
En un mundo hiperconectado, dinámico y cargado de incertidumbre como el actual, los métodos y modelos analíticos convencionales están mostrando sus limitaciones. Las organizaciones requieren, por tanto, herramientas útiles que empleen tecnología de información y modelos de simulación computacional como mecanismos para la toma de decisiones y la resolución de problemas. Una de las más recientes, potentes y prometedoras es el modelamiento y la simulación basados en agentes (MSBA). Muchas organizaciones, incluidas empresas consultoras, emplean esta técnica para comprender fenómenos, hacer evaluación de estrategias y resolver problemas de diversa índole. Pese a ello, no existe (hasta donde conocemos) un estado situacional acerca del MSBA y su aplicación a la investigación organizacional. Cabe anotar, además, que por su novedad no es un tema suficientemente difundido y trabajado en Latinoamérica. En consecuencia, este proyecto pretende elaborar un estado situacional sobre el MSBA y su impacto sobre la investigación organizacional.
Resumo:
ABSTRACT Non-Gaussian/non-linear data assimilation is becoming an increasingly important area of research in the Geosciences as the resolution and non-linearity of models are increased and more and more non-linear observation operators are being used. In this study, we look at the effect of relaxing the assumption of a Gaussian prior on the impact of observations within the data assimilation system. Three different measures of observation impact are studied: the sensitivity of the posterior mean to the observations, mutual information and relative entropy. The sensitivity of the posterior mean is derived analytically when the prior is modelled by a simplified Gaussian mixture and the observation errors are Gaussian. It is found that the sensitivity is a strong function of the value of the observation and proportional to the posterior variance. Similarly, relative entropy is found to be a strong function of the value of the observation. However, the errors in estimating these two measures using a Gaussian approximation to the prior can differ significantly. This hampers conclusions about the effect of the non-Gaussian prior on observation impact. Mutual information does not depend on the value of the observation and is seen to be close to its Gaussian approximation. These findings are illustrated with the particle filter applied to the Lorenz ’63 system. This article is concluded with a discussion of the appropriateness of these measures of observation impact for different situations.
Resumo:
Data assimilation methods which avoid the assumption of Gaussian error statistics are being developed for geoscience applications. We investigate how the relaxation of the Gaussian assumption affects the impact observations have within the assimilation process. The effect of non-Gaussian observation error (described by the likelihood) is compared to previously published work studying the effect of a non-Gaussian prior. The observation impact is measured in three ways: the sensitivity of the analysis to the observations, the mutual information, and the relative entropy. These three measures have all been studied in the case of Gaussian data assimilation and, in this case, have a known analytical form. It is shown that the analysis sensitivity can also be derived analytically when at least one of the prior or likelihood is Gaussian. This derivation shows an interesting asymmetry in the relationship between analysis sensitivity and analysis error covariance when the two different sources of non-Gaussian structure are considered (likelihood vs. prior). This is illustrated for a simple scalar case and used to infer the effect of the non-Gaussian structure on mutual information and relative entropy, which are more natural choices of metric in non-Gaussian data assimilation. It is concluded that approximating non-Gaussian error distributions as Gaussian can give significantly erroneous estimates of observation impact. The degree of the error depends not only on the nature of the non-Gaussian structure, but also on the metric used to measure the observation impact and the source of the non-Gaussian structure.