887 resultados para Regular Extension Operators
Resumo:
2000 Mathematics Subject Classification: Primary 46E15, 54C55; Secondary 28B20.
Resumo:
We construct a countable-dimensional Hausdorff locally convex topological vector space $E$ and a stratifiable closed linear subspace $F$ subset of $E$ such that any linear extension operator from $C_b(F)$ to $C_b(E)$ is unbounded (here $C_b(X)$ stands for the Banach space of continuous bounded real-valued functions on $X$).
Resumo:
Generally, adjustment of gravity equilibrator to a new payload requires energy, e.g. to increase the pre-load of the balancing spring. A novel way of energy-free adjustment of gravity equilibrators is possible by introducing the concept of a storage spring. The storage spring supplies or stores the energy necessary to adjust the balancer spring of the gravity equilibrator. In essence the storage spring mechanism maintains a constant potential energy within the spring mechanism; energy is exchanged between the storage and balancer spring when needed. Various conceptual designs using both zero-free-length springs and regular extension springs are proposed. Two models were manufactured demonstrating the practical embodiments and functionality.
Resumo:
We show that if E is an atomic Banach lattice with an ordercontinuous norm, A, B ∈ Lr(E) and MA,B is the operator on Lr(E) defined by MA,B(T) = AT B then ||MA,B||r = ||A||r||B||r but that there is no real α > 0 such that ||MA,B || ≥ α ||A||r||B ||r.
Resumo:
We show that multitrace interactions can be consistently incorporated into an extended AdS conformal field theory (CFT) prescription involving the inclusion of generalized boundary conditions and a modified Legendre transform prescription. We find new and consistent results by considering a self-contained formulation which relates the quantization of the bulk theory to the AdS/CFT correspondence and the perturbation at the boundary by double-trace interactions. We show that there exist particular double-trace perturbations for which irregular modes are allowed to propagate as well as the regular ones. We perform a detailed analysis of many different possible situations, for both minimally and nonminimally coupled cases. In all situations, we make use of a new constraint which is found by requiring consistency. In the particular nonminimally coupled case, the natural extension of the Gibbons-Hawking surface term is generated.
Resumo:
2002 Mathematics Subject Classification: 35L15, 35L80, 35S05, 35S30
Resumo:
Some continuity and differentiability properties of the eigenvalues and eigenfunctions of finite section normal integral operators are proved. These are the extension of corresponding results for symmetric operators ([4.], 554–566; K. B. Athreya and R. Vittal Rao, to appear; [10.], 463–471.
Resumo:
The Kac-Akhiezer formula for finite section normal Wiener-Hopf integral operators is proved. This is an extension of the corresponding result for symmetric operator [2, 3, 4, 5, 6, 7].