1000 resultados para Regressão Múltipla
Resumo:
Telecommunication is one of the most dynamic and strategic areas in the world. Many technological innovations has modified the way information is exchanged. Information and knowledge are now shared in networks. Broadband Internet is the new way of sharing contents and information. This dissertation deals with performance indicators related to maintenance services of telecommunications networks and uses models of multivariate regression to estimate churn, which is the loss of customers to other companies. In a competitive environment, telecommunications companies have devised strategies to minimize the loss of customers. Loosing customers presents a higher cost than obtaining new ones. Corporations have plenty of data stored in a diversity of databases. Usually the data are not explored properly. This work uses the Knowledge Discovery in Databases (KDD) to establish rules and new models to explain how churn, as a dependent variable, are related to a diversity of service indicators, such as time to deploy the service (in hours), time to repair (in hours), and so on. Extraction of meaningful knowledge is, in many cases, a challenge. Models were tested and statistically analyzed. The work also shows results that allows the analysis and identification of which quality services indicators influence the churn. Actions are also proposed to solve, at least in part, this problem
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, Programa de Pós-Graduação em Agronegócios, 2016.
Resumo:
This study aimed to model a equation for the demand of automobiles and light commercial vehicles, based on the data from February 2007 to July 2014, through a multiple regression analysis. The literature review consists of an information collection of the history of automotive industry, and it has contributed to the understanding of the current crisis that affects this market, which consequence was a large reduction in sales. The model developed was evaluated by a residual analysis and also was used an adhesion test - F test - with a significance level of 5%. In addition, a coefficient of determination (R2) of 0.8159 was determined, indicating that 81.59% of the demand for automobiles and light commercial vehicles can be explained by the regression variables: interest rate, unemployment rate, broad consumer price index (CPI), gross domestic product (GDP) and tax on industrialized products (IPI). Finally, other ten samples, from August 2014 to May 2015, were tested in the model in order to validate its forecasting quality. Finally, a Monte Carlo Simulation was run in order to obtain a distribution of probabilities of future demands. It was observed that the actual demand in the period after the sample was in the range that was most likely to occur, and that the GDP and the CPI are the variable that have the greatest influence on the developed model
Resumo:
This study aimed to model a equation for the demand of automobiles and light commercial vehicles, based on the data from February 2007 to July 2014, through a multiple regression analysis. The literature review consists of an information collection of the history of automotive industry, and it has contributed to the understanding of the current crisis that affects this market, which consequence was a large reduction in sales. The model developed was evaluated by a residual analysis and also was used an adhesion test - F test - with a significance level of 5%. In addition, a coefficient of determination (R2) of 0.8159 was determined, indicating that 81.59% of the demand for automobiles and light commercial vehicles can be explained by the regression variables: interest rate, unemployment rate, broad consumer price index (CPI), gross domestic product (GDP) and tax on industrialized products (IPI). Finally, other ten samples, from August 2014 to May 2015, were tested in the model in order to validate its forecasting quality. Finally, a Monte Carlo Simulation was run in order to obtain a distribution of probabilities of future demands. It was observed that the actual demand in the period after the sample was in the range that was most likely to occur, and that the GDP and the CPI are the variable that have the greatest influence on the developed model
Resumo:
Este trabalho apresenta o Modelo de Regressão Espacial Autorregressivo Misto (SAR) e Modelo do Erro Espacial (CAR) no intuito de investigar a associação entre a produtividade da soja e as variáveis agrometeorológicas relacionadas à precipitação pluvial, temperatura média e radiação solar global. O estudo foi realizado com os dados das safras dos anos agrícolas de 2005/2006 a 2007/2008, da região oeste do estado do Paraná. Como os dados agrometeorológicos estão disponíveis apenas para oito municípios da região em estudo, as estimativas foram obtidas por meio do uso de Polígonos de Thiessen. A estimativa de parâmetros dos modelos ajustados foi obtida utilizando o método de Máxima Verossimilhança. A avaliação do desempenho dos modelos foi realizada com base no coeficiente de determinação (R²), no máximo valor do logaritmo da função verossimilhança e no critério de informação bayesiano de Schwarz (BIC). Este estudo também permitiu verificar a correlação e autocorrelação espacial entre a produtividade da soja e os elementos agrometeorológicos, por meio da análise espacial de área, usando de técnicas como o índice I de Moran Global e Local uni e bivariado, e os testes de significância. O estudo pôde demonstrar que, por meio dos indicadores de desempenho utilizados, os modelos SAR e CAR ofereceram melhores resultados em relação ao modelo de regressão múltipla clássica.
Resumo:
Pós-graduação em Fisiopatologia em Clínica Médica - FMB
Resumo:
O estudo teve por objetivo construir um modelo de regressão baseada no uso do solo para predizer a concentração material particulado inalável (MP10) no município de São Paulo, Brasil. O estudo se baseou na média de MP10 de 2007 de 9 estações de monitoramento. Obtiveram-se dados demográficos, viários e de uso do solo em círculos concêntricos de 250 a 1.000 m para compor o modelo. Calculou-se regressão linear simples para selecionar as variáveis mais robustas e sem colinearidade. Quatro variáveis entraram no modelo de regressão múltipla. Somente tráfego leve em círculos concêntricos <250 m permaneceu no modelo final, que explicou 63,8% da variância de MP10. Verificou-se que o método de regressão baseada no uso do solo é rápido, de fácil execução. Entretanto, este modelo se baseou em medições de MP10 de poucos locais.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
OBJECTIVE: To analyze the impact on human health of exposure to particulate matter emitted from burnings in the Brazilian Amazon region. METHODS: This was an ecological study using an environmental exposure indicator presented as the percentage of annual hours (AH%) of PM2.5 above 80 μg/m3. The outcome variables were the rates of hospitalization due to respiratory disease among children, the elderly and the intermediate age group, and due to childbirth. Data were obtained from the National Space Research Institute and the Ministry of Health for all of the microregions of the Brazilian Amazon region, for the years 2004 and 2005. Multiple regression models for the outcome variables in relation to the predictive variable AH% of PM2.5 above 80 μg/m3 were analyzed. The Human Development Index (HDI) and mean number of complete blood counts per 100 inhabitants in the Brazilian Amazon region were the control variables in the regression analyses. RESULTS: The association of the exposure indicator (AH%) was higher for the elderly than for other age groups (β = 0.10). For each 1% increase in the exposure indicator there was an increase of 8% in child hospitalization, 10% in hospitalization of the elderly, and 5% for the intermediate age group, even after controlling for HDI and mean number of complete blood counts. No association was found between the AH% and hospitalization due to childbirth. CONCLUSIONS: The indicator of atmospheric pollution showed an association with occurrences of respiratory diseases in the Brazilian Amazon region, especially in the more vulnerable age groups. This indicator may be used to assess the effects of forest burning on human health.