1000 resultados para Regressão Linear
Resumo:
BACKGROUND: Changes in heart rate during rest-exercise transition can be characterized by the application of mathematical calculations, such as deltas 0-10 and 0-30 seconds to infer on the parasympathetic nervous system and linear regression and delta applied to data range from 60 to 240 seconds to infer on the sympathetic nervous system. The objective of this study was to test the hypothesis that young and middle-aged subjects have different heart rate responses in exercise of moderate and intense intensity, with different mathematical calculations. METHODS: Seven middle-aged men and ten young men apparently healthy were subject to constant load tests (intense and moderate) in cycle ergometer. The heart rate data were submitted to analysis of deltas (0-10, 0-30 and 60-240 seconds) and simple linear regression (60-240 seconds). The parameters obtained from simple linear regression analysis were: intercept and slope angle. We used the Shapiro-Wilk test to check the distribution of data and the t test for unpaired comparisons between groups. The level of statistical significance was 5%. RESULTS: The value of the intercept and delta 0-10 seconds was lower in middle age in two loads tested and the inclination angle was lower in moderate exercise in middle age. CONCLUSION: The young subjects present greater magnitude of vagal withdrawal in the initial stage of the HR response during constant load exercise and higher speed of adjustment of sympathetic response in moderate exercise.
Resumo:
Do problema do ajuste de uma regressão linear, quando a distribuição da variável dependente tem duplo truncamento, utilizando a função de máxima verossimilhança e um processo iterativo.
Resumo:
OBJETIVO: Estratégias metodológicas vêm sendo desenvolvidas para minimizar o efeito do erro de medida da dieta. O objetivo do estudo foi descrever a aplicação de uma estratégia para correção da informação dietética pelo erro de medida. MÉTODOS: Foram obtidos dados de consumo alimentar pela aplicação do Questionário de Freqüência Alimentar a 79 adolescentes do Município de São Paulo em 1999. Os dados dietéticos obtidos foram corrigidos por meio de regressão linear, após o ajuste pela energia usando-se o método dos resíduos. O método de referência utilizado foi o recordatório de 24 horas, aplicado em três momentos distintos. RESULTADOS: Os valores corrigidos aproximaram-se dos valores de referência. O fator de correção lambda foi de 0,89 para energia. Para os macronutrientes, os fatores foram de 0,41; 0,22 e 0,20, para carboidratos, lipídios e proteínas, respectivamente. CONCLUSÕES: As médias e desvios-padrão dos valores corrigidos denotam que houve uma correção do erro de medida. Apesar disso, debate-se o desempenho desses métodos, que são notoriamente imperfeitos quando seus pressupostos teóricos não são atendidos, o que é comum nos estudos da dieta que usam instrumentos de medida baseados no relato dos indivíduos.
Resumo:
Este trabalho teve por objetivo estimar equações de regressão linear múltipla tendo, como variáveis explicativas, as demais características avaliadas em experimento de milho e, como variáveis principais, a diferença mínima significativa em percentagem da média (DMS%) e quadrado médio do erro (QMe), para peso de grãos. Com 610 experimentos conduzidos na Rede de Ensaios Nacionais de Competição de Cultivares de Milho, realizados entre 1986 e 1996 (522 experimentos) e em 1997 (88 experimentos), estimaram-se duas equações de regressão, com os 522 experimentos, validando estas pela análise de regressão simples entre os valores reais e os estimados pelas equações, com os 88 restantes, observando que, para a DMS% a equação não estimava o mesmo valor que a fórmula original e, para o QMe, a equação poderia ser utilizada na estimação. Com o teste de Lilliefors, verificou-se que os valores do QMe aderiam à distribuição normal padrão e foi construída uma tabela de classificação dos valores do QMe, baseada nos valores observados na análise da variância dos experimentos e nos estimados pela equação de regressão.
Resumo:
O fitotensiômetro de Alvim é amplamente utilizado para demonstrar a variação da turgescência do tronco, que é reduzida durante o dia, como efeito líquido da transpiração que ocorre na copa, e aumentada durante o período noturno, devido à recuperação que pode ser total ou parcial, dependendo da umidade disponível no solo, e da capacidade da planta em absorvê-la. Os valores indicados no manômetro são relativos, e muitas vezes não coincidem com os previstos pelas taxas de transpiração mensuradas ao longo do dia. Este trabalho considera a necessidade de uma nova interpretação das curvas observadas, através do seu seccionamento em diferentes cinéticas, sendo aplicadas equações de regressão linear a estas diferentes partes, e analisado o coeficiente angular destas regressões como parâmetro comparativo da intensidade das mudanças na turgescência do tronco entre diferentes plantas, sob diferentes condições ambientais.
Resumo:
Jerked beef is officially defined as salted, cured and dried beef. Water activity (Aw), moisture, ash and residual nitrite are the physicochemical parameters that define this product identity and quality standards. In this work, the behavior of these parameters during jerked beef processing was evaluated and a significant correlation among them was revealed. These results allowed the establishment of statistical equations that enable the estimation of all the physicochemical parameters from the results obtained in the measurement of just one of them.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
This study aimed to model a equation for the demand of automobiles and light commercial vehicles, based on the data from February 2007 to July 2014, through a multiple regression analysis. The literature review consists of an information collection of the history of automotive industry, and it has contributed to the understanding of the current crisis that affects this market, which consequence was a large reduction in sales. The model developed was evaluated by a residual analysis and also was used an adhesion test - F test - with a significance level of 5%. In addition, a coefficient of determination (R2) of 0.8159 was determined, indicating that 81.59% of the demand for automobiles and light commercial vehicles can be explained by the regression variables: interest rate, unemployment rate, broad consumer price index (CPI), gross domestic product (GDP) and tax on industrialized products (IPI). Finally, other ten samples, from August 2014 to May 2015, were tested in the model in order to validate its forecasting quality. Finally, a Monte Carlo Simulation was run in order to obtain a distribution of probabilities of future demands. It was observed that the actual demand in the period after the sample was in the range that was most likely to occur, and that the GDP and the CPI are the variable that have the greatest influence on the developed model
Resumo:
This study aimed to model a equation for the demand of automobiles and light commercial vehicles, based on the data from February 2007 to July 2014, through a multiple regression analysis. The literature review consists of an information collection of the history of automotive industry, and it has contributed to the understanding of the current crisis that affects this market, which consequence was a large reduction in sales. The model developed was evaluated by a residual analysis and also was used an adhesion test - F test - with a significance level of 5%. In addition, a coefficient of determination (R2) of 0.8159 was determined, indicating that 81.59% of the demand for automobiles and light commercial vehicles can be explained by the regression variables: interest rate, unemployment rate, broad consumer price index (CPI), gross domestic product (GDP) and tax on industrialized products (IPI). Finally, other ten samples, from August 2014 to May 2015, were tested in the model in order to validate its forecasting quality. Finally, a Monte Carlo Simulation was run in order to obtain a distribution of probabilities of future demands. It was observed that the actual demand in the period after the sample was in the range that was most likely to occur, and that the GDP and the CPI are the variable that have the greatest influence on the developed model
Resumo:
INTRODUÇÃO: As modificações da frequência cardíaca (FC) durante a transição repouso-exercício podem ser caracterizadas por meio da aplicação de cálculos matemáticos simples, como: deltas 0-10 e 0-30s para inferir sobre o sistema nervoso parassimpático, e delta e regressão linear aplicados no intervalo 60-240s para inferir sobre o sistema nervoso simpático. Assim, o objetivo deste estudo foi testar a hipótese de que indivíduos jovens e de meia-idade apresentam diferentes respostas da FC em exercício de intensidade moderada e intensa, com diferentes cálculos matemáticos. MÉTODOS: Homens aparentemente saudáveis, sendo sete de meia-idade e 10 jovens, foram submetidos a testes de carga constante de intensidade moderada e intensa. Foram calculados os deltas da FC nos períodos de 0-10s, 0-30s e 60-240s e a regressão linear simples no período de 60 a 240s. Os parâmetros obtidos na análise de regressão linear simples foram: intercepto e inclinação angular. Utilizou-se o teste Shapiro-Wilk para verificar a distribuição dos dados e o teste t não pareado para comparação entre os grupos. O nível de significância estatística considerado foi 5%. RESULTADOS: O valor do intercepto e do delta 0-10s foi menor no grupo meia-idade nas duas cargas e a inclinação do ângular foi menor no grupo meia-idade no exercício moderado. CONCLUSÃO: Os indivíduos jovens apresentam retirada vagal de maior magnitude no estágio inicial da resposta da FC durante exercício dinâmico em carga constante nas intensidades analisadas e maior velocidade de ajuste da resposta simpática em exercícios moderados.
Resumo:
Os avanços tecnológicos e científicos, na área da saúde, têm vindo a aliar áreas como a Medicina e a Matemática, cabendo à ciência adequar de forma mais eficaz os meios de investigação, diagnóstico, monitorização e terapêutica. Os métodos desenvolvidos e os estudos apresentados nesta dissertação resultam da necessidade de encontrar respostas e soluções para os diferentes desafios identificados na área da anestesia. A índole destes problemas conduz, necessariamente, à aplicação, adaptação e conjugação de diferentes métodos e modelos das diversas áreas da matemática. A capacidade para induzir a anestesia em pacientes, de forma segura e confiável, conduz a uma enorme variedade de situações que devem ser levadas em conta, exigindo, por isso, intensivos estudos. Assim, métodos e modelos de previsão, que permitam uma melhor personalização da dosagem a administrar ao paciente e por monitorizar, o efeito induzido pela administração de cada fármaco, com sinais mais fiáveis, são fundamentais para a investigação e progresso neste campo. Neste contexto, com o objetivo de clarificar a utilização em estudos na área da anestesia de um ajustado tratamento estatístico, proponho-me abordar diferentes análises estatísticas para desenvolver um modelo de previsão sobre a resposta cerebral a dois fármacos durante sedação. Dados obtidos de voluntários serão utilizados para estudar a interação farmacodinâmica entre dois fármacos anestésicos. Numa primeira fase são explorados modelos de regressão lineares que permitam modelar o efeito dos fármacos no sinal cerebral BIS (índice bispectral do EEG – indicador da profundidade de anestesia); ou seja estimar o efeito que as concentrações de fármacos têm na depressão do eletroencefalograma (avaliada pelo BIS). Na segunda fase deste trabalho, pretende-se a identificação de diferentes interações com Análise de Clusters bem como a validação do respetivo modelo com Análise Discriminante, identificando grupos homogéneos na amostra obtida através das técnicas de agrupamento. O número de grupos existentes na amostra foi, numa fase exploratória, obtido pelas técnicas de agrupamento hierárquicas, e a caracterização dos grupos identificados foi obtida pelas técnicas de agrupamento k-means. A reprodutibilidade dos modelos de agrupamento obtidos foi testada através da análise discriminante. As principais conclusões apontam que o teste de significância da equação de Regressão Linear indicou que o modelo é altamente significativo. As variáveis propofol e remifentanil influenciam significativamente o BIS e o modelo melhora com a inclusão do remifentanil. Este trabalho demonstra ainda ser possível construir um modelo que permite agrupar as concentrações dos fármacos, com base no efeito no sinal cerebral BIS, com o apoio de técnicas de agrupamento e discriminantes. Os resultados desmontram claramente a interacção farmacodinâmica dos dois fármacos, quando analisamos o Cluster 1 e o Cluster 3. Para concentrações semelhantes de propofol o efeito no BIS é claramente diferente dependendo da grandeza da concentração de remifentanil. Em suma, o estudo demostra claramente, que quando o remifentanil é administrado com o propofol (um hipnótico) o efeito deste último é potenciado, levando o sinal BIS a valores bastante baixos.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Civil, Reabilitação de Edifícios
Resumo:
É apresentada uma introdução ao modelo de regressão linear do ponto de vista bayesiano. Para este feito, considera-se o modelo de regressão linear simples, introduzindo-se a hipótese simplificadora de que o parâmetro σ² (variância dos erros) é conhecido. São analisados os casos em que a distribuição a priori é não informativa e em que a distribuição a priori é conjugada (informativa). Por último, e com o objectivo de ilustrar os conceitos e as metodologias referidas, é apresentado um exemplo.
Resumo:
A resistência do solo ao penetrômetro exerce grande influência sobre o crescimento e desenvolvimento vegetal, uma vez que o crescimento das raízes, assim como o rendimento das culturas, varia de forma inversamente proporcional ao seu valor. Dessa forma, a análise da variabilidade espacial da resistência do solo ao penetrômetro e da produtividade, por meio da geoestatística, pode indicar alternativas de manejo para reduzir os efeitos da variabilidade do solo sobre a produtividade e também melhorar a estimativa de respostas das culturas sob determinadas práticas de manejo. Diante do exposto, o objetivo deste trabalho foi relacionar e caracterizar a variabilidade espacial da resistência do solo ao penetrômetro (RP) e a produtividade do feijoeiro irrigado em sistema de semeadura direta, em duas safras consecutivas. O experimento foi realizado em Latossolo Vermelho distroférrico típico, no campo experimental da Faculdade de Engenharia Agrícola da Unicamp, no município de Campinas-SP, cujas coordenadas geográficas são: 22 ° 48 ' 57 " de latitude sul, 47 ° 03 ' 33 " de longitude oeste e altitude média de 640 m. As avaliações foram realizadas em uma malha regular de amostragem de 3 x 3 m, totalizando 60 pontos amostrais por parcela. A análise da dependência espacial foi avaliada pela geoestatística, e os parâmetros dos semivariogramas utilizados para construir mapas de isolinhas, por meio do interpolador de krigagem do programa Surfer 8.0. A regressão linear simples entre mapas (pixel-a-pixel) mostrou correlação negativa entre os valores de RP e a produtividade; no entanto, a produtividade do feijoeiro irrigado apresentou baixa correlação com a resistência do solo ao penetrômetro em sistema semeadura direta nas duas safras.
Resumo:
O objetivo deste trabalho foi evidenciar diferenças entre modelos de regressão, obtidos pelo método de Eberhart & Russell, na análise de adaptabilidade e estabilidade de comportamento de genótipos, e propor uma metodologia de agrupamento dos modelos similares. O teste para verificar a identidade de modelos foi empregado em dados de avaliação de 14 genótipos de milho em oito ambientes. Uma vez rejeitada a hipótese de igualdade dos modelos de regressão, realizou-se o agrupamento desses modelos com base no cálculo do quadrado médio da redução (QMRed) entre pares dos modelos de regressão. Após a obtenção desses valores, foi selecionado o de menor magnitude e verificada sua significância pelo teste F. NA hipótese de esse QMRed não ser significativo, o par de modelos relacionado a ele forma o grupo inicial. O método para verificar a identidade de modelos pode ser usado com sucesso no agrupamento de equações de regressão linear obtidas pelo método de Eberhart & Russell com o objetivo de estudar a adaptabilidade e a estabilidade de genótipos. O método de agrupamento de modelos similares permite formar grupos de genótipos com o mesmo comportamento estatístico