936 resultados para Reduced Folate Carrier Protein
Resumo:
BACKGROUND: Meningomyelocele (MM) results from lack of closure of the neural tube during embryologic development. Periconceptional folic acid supplementation is a modifier of MM risk in humans, leading toan interest in the folate transport genes as potential candidates for association to MM. METHODS: This study used the SNPlex Genotyping (ABI, Foster City, CA) platform to genotype 20 single polymorphic variants across the folate receptor genes (FOLR1, FOLR2, FOLR3) and the folate carrier gene (SLC19A1) to assess their association to MM. The study population included 329 trio and 281 duo families. Only cases with MM were included. Genetic association was assessed using the transmission disequilibrium test in PLINK. RESULTS: A variant in the FOLR2 gene (rs13908), three linked variants in the FOLR3 gene (rs7925545, rs7926875, rs7926987), and two variants in the SLC19A1 gene (rs1888530 and rs3788200) were statistically significant for association to MM in our population. CONCLUSION: This study involved the analyses of selected single nucleotide polymorphisms across the folate receptor genes and the folate carrier gene in a large population sample. It provided evidence that the rare alleles of specific single nucleotide polymorphisms within these genes appear to be statistically significant for association to MM in the patient population that was tested.
Resumo:
In this report, we have reanalyzed genotyping data in a collection of families from South America based on maternal origin. Genotyping analysis was performed at the Craniofacial Anomalies Research Center at the University of Iowa. These genotypes were derived from genomic DNA samples obtained from blood spots from children born with isolated orofacial clefts in 45 hospitals located in eight countries (Argentina, Bolivia, Brazil, Chile, Ecuador, Paraguay, Uruguay, and Venezuela) collaborating with ECLAMC (Latin American Collaborative Studies of Congenital Malformations) between January 1998 and December 1999. Dried blood samples were sent by regular mail to the Laboratory of Congenital Malformations, Federal University of Rio de Janeiro. Previous findings suggested that mitochondrial haplotype D is more commonly found among cleft cases born in South America. We hypothesized that association of certain genes may depend upon the ethnic origin, as defined by population-specific markers. Therefore, we tested if markers in MTHFR (5,10-methylenetetrahydrofolate reductase) and RFC1 (reduced folate carrier 1) were associated with oral clefts, depending on the maternal origin defined by the mitochondrial haplotype. Transmission distortion of alleles in MTHFR C677T and RFC1 G80A polymorphic variants was tested in 200 mother/affected child pairs taking into consideration maternal origin. RFC1 variation was over-transmitted to children born with cleft lip only (P = 0.017) carrying mitochondrial DNA haplotypes other than haplotype D. Our results provide a new indication that variation in RFC1 may contribute to cleft lip only. Future studies should investigate the association between oral clefts and RFC1 based on more discrete phenotypes.
Resumo:
The newborns of mammals have a high folate demand, yet obtain adequate folate nutrition solely from their mothers' milk despite its low folate content. Milk folate is entirely bound by an excess of folate-binding protein (FBP), prompting speculation that FBP may affect the bioavailability of the limited folate supply. Previous research has shown that FBP-bound folic acid is more gradually absorbed, thereby reducing the peak plasma folate concentration and preventing loss into the urine. Natural folates are reduced derivatives of folic acid, with milk predominantly containing 5-methyltetrahydrofolate, yet little research has been carried out to determine the role of FBP in the bioavailability of reduced folates. We studied the effect of FBP on folate nutrition of rats in both single-dose and 4-wk feeding experiments. The effect of FBP was influenced by the presence of other milk components. FBP increased bioavailability of dietary folate when it was consumed with other whey proteins or with soluble casein. However, in the presence of acid-precipitated casein or a whey preparation enriched in lipids, bioavailability was decreased. These results highlight the difficulties of extrapolating from experimental results obtained using purified diets alone and of studying interactions among dietary components. They suggest that the addition of FBP-rich foods to folate-rich foods could enhance the bioavailability of natural folates, but that the outcome of such a combination would depend on interactions with other components of the diet.
Resumo:
Background: The methylenetetrahydrofolate reductase (MTHFR), glutamate carboxypeptidase II (GCPII) and reduced folate carrier (RFC1) gene polymorphisms were associated with folate status. We investigated the effects of these polymorphisms on serum folate (SF) and folate-related metabolites in mothers and their neonates. Methods: Cobalamin (Cbl), SF, total homocysteine (tHcy), methylmalonic acid (MMA), S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH) were measured in 275 healthy women and their neonates. MTHFR C677T, GCPII C1561T and RFC1 A80G polymorphisms were determined by PCR-RFLP. Results: Maternal tHcy was affected individually by MTHFR C677T and GCPII C1561T polymorphisms and by combined genotypes MTHFR 677TT/GCPII 1561CC and MTHFR 677TT/RFC1 80AG. The MTHFR and RFC1 polymorphisms were not associated with variations in vitamins or SAM, SAH and MMA in neonates. Neonatal tHcy was predicted directly by maternal tHcy and inversely by maternal SF, neonatal Cbl and neonatal RFC1 80G allele (AG+GG genotypes). Maternal MMA and SAM/SAH were predicted by creatinine and Cbl, respectively. Neonatal MMA was predicted by maternal MMA and GCPII 1561T allele (CT+TT genotypes) and by neonatal Cbl. Conclusions: Maternal tHcy was affected by MTHFR C677T, RFC1 A80G and GCPII C1561T polymorphisms. Maternal GCPII C1561T variant was associated with neonatal MMA. Neonatal RFC1 A80G polymorphism influenced tHcy in neonates. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A genomic region containing the fatty acid biosynthetic (fab) genes was isolated from the sugarcane leaf-scald pathogen Xanthomonasalbilineans. The order and predicted products of fabG (beta -ketoacyl reductase), acpP (acyl carrier protein), fabF(ketoacyl synthase II) and downstream genes in X. albilineans are very similar to those in Escherichia coli, with one exception. Sequence analysis, confirmed by insertional knockout and specific substrate feeding experiments, shows that the position occupied by pabC (encoding aminodeoxychorismate lyase) in other bacteria is occupied instead by pabB (encoding aminodeoxychorismate synthase component I) in X. albilineans. Downstream of pabB, X. albilineans resumes the arrangement common to characterized Gram-negative bacteria, with three transcriptionally coupled genes, encoding an ORF340 protein of undefined function, thymidylate kinase and delta' subunit of DNA polymerase III holoenzyme (HolB). Different species may obtain a common advantage from coordinated regulation of the same biosynthetic pathways using different genes in this region. (C) 2000 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
The effect of FBP on folate bio-availability depends on its environment. The FBP of whole WPC enhances bioavailability of folates more than does purified FBP and its efficacy might be even greater when lipids are removed from the WPC. FBP polymerises and folate release from the polymer is found to be slower than that from the monomer. FBP has a role also as a folate receptor at cell surfaces and in this role folate binding increases polymerisation of FBP attached to lipid membranes.
Resumo:
The dietary supply of folates and their measurement are both affected, potentially, by the instability of some folates. Labile folates appear to be stabilized by binding to folate-binding protein (FBP); this paper reports measurements of that stabilization. The degradation rates of the very labile tetrahydrofolate (H(4)folate) and moderately labile 5-methyltetrahydrofolate (5-CH(3)H(4)folate) were measured with the compounds free or bound to either soluble or immobilized bovine milk FBP. Complexation increased stability from 2- to > 1000-fold, depending on buffer and temperature conditions. H(4)folate at 4degreesC and pH 6.7 appeared to be quite stable for > 100 d when bound to soluble FBP but had a half-life of < 1 h when free. Stabilization of milk folates may be a role of FBP and would improve the bioavailability of milk folate to newborns and other consumers.
Resumo:
Glyphosate is an herbicide that inhibits the enzyme 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPs) (EC 2.5.1.19). EPSPs is the sixth enzyme of the shikimate pathway, by which plants synthesize the aromatic amino acids phenylalanine, tyrosine, and tryptophan and many compounds used in secondary metabolism pathways. About fifteen years ago it was hypothesized that it was unlikely weeds would evolve resistance to this herbicide because of the limited degree of glyphosate metabolism observed in plants, the low resistance level attained to EPSPs gene overexpression, and because of the lower fitness in plants with an altered EPSPs enzyme. However, today 20 weed species have been described with glyphosate resistant biotypes that are found in all five continents of the world and exploit several different resistant mechanisms. The survival and adaptation of these glyphosate resistant weeds are related toresistance mechanisms that occur in plants selected through the intense selection pressure from repeated and exclusive use of glyphosate as the only control measure. In this paper the physiological, biochemical, and genetic basis of glyphosate resistance mechanisms in weed species are reviewed and a novel and innovative theory that integrates all the mechanisms of non-target site glyphosate resistance in plants is presented.
Resumo:
Estrogen is an important steroid hormone that mediates most of its effects on regulation of gene expression by binding to intracellular receptors. The consensus estrogen response element (ERE) is a 13 bp palindromic inverted repeat with a three nucleotide spacer. However, several reports suggest that many estrogen target genes are regulated by diverse elements, such as imperfect EREs and ERE half sites (ERE 1/2),which are either the proximal or the distal half of the palindrome. To gain more insight into ERE half site-mediated gene regulation, we used a region from the estrogen-regulated chicken riboflavin carrier protein (RCP) gene promoter that contains ERE half sites. Using moxestrol, an analogue of estrogen and transient transfection of deletion and mutation containing RCP promoter/reporter constructs in chicken hepatoma (LMH2A) cells, we identified an estrogen response unit (ERU) composed of two consensus ERE 1/2 sites and one non-consensus ERE 1/2 site. Mutation of any of these sites within this ERU abolishes moxestrol response. Further, the ERU is able to confer moxestrol responsiveness to a heterologous promoter. Interestingly, RCP promoter is regulated by moxestrol in estrogen responsive human MCF-7 cells, but not in other cell lines such as NIH3T3 and HepG2 despite estrogen receptor-alpha (ER-�) co transfection. Electrophoretic mobility shift assays (EMSAs) with promoter regions encompassing the half sites and nuclear extracts from LMH2A cells show the presence of a moxestrol-induced complex that is abolished by a polyclonal anti-ER� antibody. Surprisingly, estrogen receptor cannot bind to these promoter elements in isolation. Thus, there appears to be a definite requirement for some other factor(s) in addition to estrogen receptor, for the generation of a suitable response of this promoter to estrogen. Our studies therefore suggest a novel mechanism of gene regulation by estrogen, involving ERE half sites without direct binding of ER to the cognate elements.
Resumo:
Estrogen is an important steroid hormone that mediates most of its effects on regulation of gene expression by binding to intracellular receptors. The consensus estrogen response element (ERE) is a 13 bp palindromic inverted repeat with a three nucleotide spacer. However, several reports suggest that many estrogen target genes are regulated by diverse elements, such as imperfect EREs and ERE half sites (ERE 1/2), which are either the proximal or the distal half of the palindrome. To gain more insight into ERE half site-mediated gene regulation, we used a region from the estrogen-regulated chicken riboflavin carrier protein (RCP) gene promoter that contains ERE half sites. Using moxestrol, an analogue of estrogen and transient transfection of deletion and mutation containing RCP promoter/reporter constructs in chicken hepatoma (LMH2A) cells, we identified an estrogen response unit (ERU) composed of two consensus ERE 1/2 sites and one non-consensus ERE 1/2 site. Mutation of any of these sites within this ERU abolishes moxestrol response. Further, the ERU is able to confer moxestrol responsiveness to a heterologous promoter. Interestingly, RCP promoter is regulated by moxestrol in estrogen responsive human MCF-7 cells, but not in other cell lines such as NIH3T3 and HepG2 despite estrogen receptor-alpha (ER-�) co transfection. Electrophoretic mobility shift assays (EMSAs) with promoter regions encompassing the half sites and nuclear extracts from LMH2A cells show the presence of a moxestrol-induced complex that is abolished by a polyclonal anti-ER� antibody. Surprisingly, estrogen receptor cannot bind to these promoter elements in isolation. Thus, there appears to be a definite requirement for some other factor(s) in addition to estrogen receptor, for the generation of a suitable response of this promoter to estrogen. Our studies therefore suggest a novel mechanism of gene regulation by estrogen, involving ERE half sites without direct binding of ER to the cognate elements.
Resumo:
ATP-binding cassette transporter A1 mediates the export of excess cholesterol from macrophages, contributing to the prevention of atherosclerosis. Advanced glycated albumin (AGE-alb) is prevalent in diabetes mellitus and is associated with the development of atherosclerosis. Independently of changes in ABCA-1 mRNA levels, AGE-alb induces oxidative stress and reduces ABCA-1 protein levels, which leads to macrophage lipid accumulation. These metabolic conditions are known to elicit endoplasmic reticulum (ER) stress. We sought to determine if AGE-alb induces ER stress and unfolded protein response (UPR) in macrophages and how disturbances to the ER could affect ABCA-1 content and cholesterol efflux in macrophages. AGE-alb induced a time-dependent increase in ER stress and UPR markers. ABCA-1 content and cellular cholesterol efflux were reduced by 33% and 47%, respectively, in macrophages treated with AGE-alb, and both were restored by treatment with 4-phenyl butyric acid (a chemical chaperone that alleviates ER stress), but not MG132 (a proteasome inhibitor). Tunicamycin, a classical ER stress inductor, also impaired ABCA-1 expression and cholesterol efflux (showing a decrease of 61% and 82%, respectively), confirming the deleterious effect of ER stress in macrophage cholesterol accumulation. Glycoxidation induces macrophage ER stress, which relates to the reduction in ABCA-1 and in reverse cholesterol transport, endorsing the adverse effect of macrophage ER stress in atherosclerosis. Thus, chemical chaperones that alleviate ER stress may represent a useful tool for the prevention and treatment of atherosclerosis in diabetes. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Folic acid, also known as vitamin B9, is the oxidized form of 5,6,7,8-tetrahydrofolate, which serves as methyl- or methylene donor (C1-building blocks) during DNA synthesis. Under physiological conditions the required amount of 5,6,7,8-tetrahydrofolate for survival of the cell is accomplished through the reduced folate carrier (RFC). In contrast, the supply of 5,6,7,8-tetrahydrofolate is insufficient under pathophysiological conditions of tumors due to an increased proliferation rate. Consequently, many tumor cells exhibit an (over)expression of the folate receptor. This phenomenon has been applied to diagnostics (PET, SPECT, MR) to image FR-positive tumors and on the other hand to treat malignancies related to a FR (over)expression. Based on this concept, a new 18F-labeled folate for PET imaging has been developed and was evaluated in vivo using tumor-bearing mice. The incorporation of oligoethylene spacers into the molecular structure led to a significant enhancement of the pharmacokinetics in comparison to previously developed 18F-folates. The liver uptake could be reduced by one sixth by remaining a tumor uptake of 3%ID/g leading to better contrast ratios. Encouraged by these results, a clickable 18F-labeled serine-based prosthetic group has been synthesized, again with the idea to improve the metabolic and pharmacokinetic profile of hydrophilic radiotracers. Therefore, an alkyne-carrying azido-functionalized serine derivative for coupling to biomolecules was synthesized and a chlorine leaving group for 18F-labeling, which could be accomplished using a microwave-assisted synthesis, a [K⊂2.2.2]+/carbonate system in DMSO. Radiochemical yields of 77±6% could be achieved.rnThe promising results obtained from the FR-targeting concept in the diagnostic field have been transferred to the boron neutron capture therapy. Therefore, a folate derivative was coupled to different boron clusters and cell uptake studies were conducted. The synthesis of the folate-boron clusters was straightforward. At first, a linker molecule based on maleic acid was synthesized, which was coupled to the boron cluster via Michael Addition of a thiol and alkene and subsequently coupled to the targeting moiety using CuAAC. The new conjugates of folate and boron clusters led to a significant increase of boron concentration in the cell of about 5-times compared to currently used and approved boron pharmaceuticals. rnMoreover, azido-folate derivatives were coupled to macromolecular carrier systems (pHPMA), which showed an enhanced and specific accumulation at target sites (up to 2.5-times) during in vivo experiments. A specific blockade could be observed up to 30% indicating an efficient targeting effect. A new kind of nanoparticles consisting of a PDLLA core and p((HPMA)-b-LMA)) as surfactants were developed and successfully radiolabeled via 18F-click chemistry in good RCYs of 8±3%rnThe nanoparticles were obtained via the miniemulsion technique in combination with solvent evaporation. The 18F-labeled nanoparticles were applied to in vivo testing using a mouse model. PET imaging showed a “mixed” biodistribution of low molecular weight as well as high molecular weight systems, indicating a partial loss of the 18F-labeled surfactant.rnIn conclusion, the presented work successfully utilized the FR-targeting concept in both, the diagnostic field (PET imaging) and for therapeutic approaches (BNCT, drug delivery systems). As a result, the high potential of FR-targeting in oncological applications has been shown and was confirmed by small animal PET imaging.rn
Resumo:
Neuropsychological impairment occurs in 20%-40% of childhood acute lymphoblastic leukemia (ALL) survivors, possibly mediated by folate depletion following methotrexate chemotherapy. We evaluated the relationship between two folate pathway polymorphisms and neuropsychological impairment after childhood ALL chemotherapy. Eighty-six childhood ALL survivors were recruited between 2004-2007 at Texas Children's Hospital after exclusion for central nervous system leukemia, cranial irradiation, and age<1 year at diagnosis. Neuropsychological evaluation at a median of 5.3 years off therapy included a parental questionnaire and the following child performance measures: Trail Making Tests A and B, Grooved Pegboard Test Dominant-Hand and Nondominant-Hand, and Digit Span subtest. We performed genotyping for polymorphisms in two folate pathway genes: reduced folate carrier (RFC1 80G>A, rs1051266) and dihydrofolate reductase (DHFR Intron-1 19bp deletion). Fisher exact test, logistic regression, Student's t-test, and ANOVA were used to compare neuropsychological test scores by genotype, using a dominant model to group genotypes. In univariate analysis, survivors with cumulative methotrexate exposure ≥9000 mg/m2 had an increased risk of attention disorder (OR=6.2, 95% CI 1.2 – 31.3), compared to survivors with methotrexate exposure <9000 mg/m2. On average, female survivors scored 8.5 points higher than males on the Digit Span subtest, a test of working memory (p=0.02). The RFC1 80G>A and DHFR Intron-1 deletion polymorphisms were not related to attention disorder or impairment on tests of attention, processing speed, fine motor speed, or memory. These data imply a strong relationship between methotrexate dose intensity and impairment in attention after childhood ALL therapy. We did not find an association between the RFC1 80G>A or DHFR Intron-1 deletion polymorphisms and long-term neuropsychological impairment in childhood ALL survivors.^
Resumo:
Cat's claw (Doxantha unguis-cati L.) vine accumulates nearly 80% palmitoleic acid (16:1Δ9) plus cis-vaccenic acid (18:1Δ11) in its seed oil. To characterize the biosynthetic origin of these unusual fatty acids, cDNAs for acyl-acyl carrier protein (acyl-ACP) desaturases were isolated from developing cat's claw seeds. The predominant acyl-ACP desaturase cDNA identified encoded a polypeptide that is closely related to the stearoyl (Δ9–18:0)-ACP desaturase from castor (Ricinis communis L.) and other species. Upon expression in Escherichia coli, the cat's claw polypeptide functioned as a Δ9 acyl-ACP desaturase but displayed a distinct substrate specificity for palmitate (16:0)-ACP rather than stearate (18:0)-ACP. Comparison of the predicted amino acid sequence of the cat's claw enzyme with that of the castor Δ9–18:0-ACP desaturase suggested that a single amino acid substitution (L118W) might account in large part for the differences in substrate specificity between the two desaturases. Consistent with this prediction, conversion of leucine-118 to tryptophan in the mature castor Δ9–18:0-ACP desaturase resulted in an 80-fold increase in the relative specificity of this enzyme for 16:0-ACP. The alteration in substrate specificity observed in the L118W mutant is in agreement with a crystallographic model of the proposed substrate-binding pocket of the castor Δ9–18:0-ACP desaturase.
Resumo:
Anacardic acids, a class of secondary compounds derived from fatty acids, are found in a variety of dicotyledonous families. Pest resistance (e.g., spider mites and aphids) in Pelargonium xhortorum (geranium) is associated with high levels (approximately 81%) of unsaturated 22:1 omega 5 and 24:1 omega 5 anacardic acids in the glandular trichome exudate. A single dominant locus controls the production of these omega 5 anacardic acids, which arise from novel 16:1 delta 11 and 18:1 delta 13 fatty acids. We describe the isolation and characterization of a cDNA encoding a unique delta 9 14:0-acyl carrier protein fatty acid desaturase. Several lines of evidence indicated that expression of this desaturase leads to the production of the omega 5 anacardic acids involved in pest resistance. First, its expression was found in pest-resistant, but not suspectible, plants and its expression followed the production of the omega 5 anacardic acids in segregating populations. Second, its expression and the occurrence of the novel 16:1 delta 11 and 18:1 delta 13 fatty acids and the omega 5 anacardic acids were specific to tall glandular trichomes. Third, assays of the recombinant protein demonstrated that this desaturase produced the 14:1 delta 9 fatty acid precursor to the novel 16:1 delta 11 and 18:1 delta 13 fatty acids. Based on our genetic and biochemical studies, we conclude that expression of this delta 9 14:0-ACP desaturase gene is required for the production of omega 5 anacardic acids that have been shown to be necessary for pest resistance in geranium.