963 resultados para Redes-em-chip
Resumo:
Com o advento dos processos submicrônicos, a capacidade de integração de transistores tem atingido níveis que possibilitam a construção de um sistema completo em uma única pastilha de silício. Esses sistemas, denominados sistemas integrados, baseiam-se no reuso de blocos previamente projetados e verificados, os quais são chamados de núcleos ou blocos de propriedade intelectual. Os sistemas integrados atuais incluem algumas poucas dezenas de núcleos, os quais são interconectados por meio de arquiteturas de comunicação baseadas em estruturas dedicadas de canais ponto-a-ponto ou em estruturas reutilizáveis constituídas por canais multiponto, denominadas barramentos. Os futuros sistemas integrados irão incluir de dezenas a centenas de núcleos em um mesmo chip com até alguns bilhões de transistores, sendo que, para atender às pressões do mercado e amortizar os custos de projeto entre vários sistemas, é importante que todos os seus componentes sejam reutilizáveis, incluindo a arquitetura de comunicação. Das arquiteturas utilizadas atualmente, o barramento é a única que oferece reusabilidade. Porém, o seu desempenho em comunicação e o seu consumo de energia degradam com o crescimento do sistema. Para atender aos requisitos dos futuros sistemas integrados, uma nova alternativa de arquitetura de comunicação tem sido proposta na comunidade acadêmica. Essa arquitetura, denominada rede-em-chip, baseia-se nos conceitos utilizados nas redes de interconexão para computadores paralelos. Esta tese se situa nesse contexto e apresenta uma arquitetura de rede-em-chip e um conjunto de modelos para a avaliação de área e desempenho de arquiteturas de comunicação para sistemas integrados. A arquitetura apresentada é denominada SoCIN (System-on-Chip Interconnection Network) e apresenta como diferencial o fato de poder ser dimensionada de modo a atender a requisitos de custo e desempenho da aplicação alvo. Os modelos desenvolvidos permitem a estimativa em alto nível da área em silício e do desempenho de arquiteturas de comunicação do tipo barramento e rede-em-chip. São apresentados resultados que demonstram a efetividade das redes-em-chip e indicam as condições que definem a aplicabilidade das mesmas.
Resumo:
Com as recentes tecnologias de fabricação é possível integrar milhões de transistores em um único chip, permitindo a criação dos chamados System-on-Chip (SoCs), que integram em um único chip um grande número de componentes (tipicamente blocos reutilizáveis conhecidos por núcleos). Quanto mais complexos forem estes sistemas, melhores técnicas de projeto serão necessárias para também reduzir o tempo e custo do projeto. Uma destas técnicas, chamada de Network-on-Chip (NoC), permite melhorar a performance da comunicação entre os núcleos e, ao mesmo tempo, fornecer uma plataforma de comunicação escalável e que pode ser reutilizada para um grande número de sistemas. Uma NoC pode ser definida como uma estrutura de roteadores e canais ponto-a-ponto que interconectam os núcleos de um sistema, provendo o suporte de comunicação entre eles. Os dados são transmitidos pela rede na forma de mensagens, que podem ser divididas em unidades menores chamadas de pacote. Uma das desvantagens desta plataforma de comunicação é o impacto na área do sistema causado pelos roteadores. Dentro deste contexto, este trabalho apresenta uma arquitetura de roteador de baixo custo, com o objetivo de permitir o uso de NoCs em sistemas onde a área do roteador representará um grande impacto no custo do sistema. A arquitetura deste roteador, chamado de Tonga, é baseada em um roteador chamado RASoC, um soft-core para SoCs. Nesta dissertação será apresentada também uma rede heterogênea, baseada na rede SoCIN, e composta por dois tipos de roteadores – RASoC e Tonga. Estes roteadores visam diferentes objetivos: Rasoc alcança uma maior performance comparada ao Tonga, mas ocupa área consideravelmente maior. Potencialmente, uma NoC heterogênea otimizada pode ser desenvolvida combinando estes roteadores, procurando o melhor compromisso entre área e latência. Os modelos desenvolvidos permitem a estimativa de área e do desempenho das arquiteturas de comunicação propostas e são apresentados resultados de performance para algumas aplicações.
Resumo:
It bet on the next generation of computers as architecture with multiple processors and/or multicore processors. In this sense there are challenges related to features interconnection, operating frequency, the area on chip, power dissipation, performance and programmability. The mechanism of interconnection and communication it was considered ideal for this type of architecture are the networks-on-chip, due its scalability, reusability and intrinsic parallelism. The networks-on-chip communication is accomplished by transmitting packets that carry data and instructions that represent requests and responses between the processing elements interconnected by the network. The transmission of packets is accomplished as in a pipeline between the routers in the network, from source to destination of the communication, even allowing simultaneous communications between pairs of different sources and destinations. From this fact, it is proposed to transform the entire infrastructure communication of network-on-chip, using the routing mechanisms, arbitration and storage, in a parallel processing system for high performance. In this proposal, the packages are formed by instructions and data that represent the applications, which are executed on routers as well as they are transmitted, using the pipeline and parallel communication transmissions. In contrast, traditional processors are not used, but only single cores that control the access to memory. An implementation of this idea is called IPNoSys (Integrated Processing NoC System), which has an own programming model and a routing algorithm that guarantees the execution of all instructions in the packets, preventing situations of deadlock, livelock and starvation. This architecture provides mechanisms for input and output, interruption and operating system support. As proof of concept was developed a programming environment and a simulator for this architecture in SystemC, which allows configuration of various parameters and to obtain several results to evaluate it
Resumo:
The increase of capacity to integrate transistors permitted to develop completed systems, with several components, in single chip, they are called SoC (System-on-Chip). However, the interconnection subsystem cans influence the scalability of SoCs, like buses, or can be an ad hoc solution, like bus hierarchy. Thus, the ideal interconnection subsystem to SoCs is the Network-on-Chip (NoC). The NoCs permit to use simultaneous point-to-point channels between components and they can be reused in other projects. However, the NoCs can raise the complexity of project, the area in chip and the dissipated power. Thus, it is necessary or to modify the way how to use them or to change the development paradigm. Thus, a system based on NoC is proposed, where the applications are described through packages and performed in each router between source and destination, without traditional processors. To perform applications, independent of number of instructions and of the NoC dimensions, it was developed the spiral complement algorithm, which finds other destination until all instructions has been performed. Therefore, the objective is to study the viability of development that system, denominated IPNoSys system. In this study, it was developed a tool in SystemC, using accurate cycle, to simulate the system that performs applications, which was implemented in a package description language, also developed to this study. Through the simulation tool, several result were obtained that could be used to evaluate the system performance. The methodology used to describe the application corresponds to transform the high level application in data-flow graph that become one or more packages. This methodology was used in three applications: a counter, DCT-2D and float add. The counter was used to evaluate a deadlock solution and to perform parallel application. The DCT was used to compare to STORM platform. Finally, the float add aimed to evaluate the efficiency of the software routine to perform a unimplemented hardware instruction. The results from simulation confirm the viability of development of IPNoSys system. They showed that is possible to perform application described in packages, sequentially or parallelly, without interruptions caused by deadlock, and also showed that the execution time of IPNoSys is more efficient than the STORM platform
Resumo:
The increasing complexity of integrated circuits has boosted the development of communications architectures like Networks-on-Chip (NoCs), as an architecture; alternative for interconnection of Systems-on-Chip (SoC). Networks-on-Chip complain for component reuse, parallelism and scalability, enhancing reusability in projects of dedicated applications. In the literature, lots of proposals have been made, suggesting different configurations for networks-on-chip architectures. Among all networks-on-chip considered, the architecture of IPNoSys is a non conventional one, since it allows the execution of operations, while the communication process is performed. This study aims to evaluate the execution of data-flow based applications on IPNoSys, focusing on their adaptation against the design constraints. Data-flow based applications are characterized by the flowing of continuous stream of data, on which operations are executed. We expect that these type of applications can be improved when running on IPNoSys, because they have a programming model similar to the execution model of this network. By observing the behavior of these applications when running on IPNoSys, were performed changes in the execution model of the network IPNoSys, allowing the implementation of an instruction level parallelism. For these purposes, analysis of the implementations of dataflow applications were performed and compared
Resumo:
O paradigma das redes em chip (NoCs) surgiu a fim de permitir alto grau de integração entre vários núcleos de sistemas em chip (SoCs), cuja comunicação é tradicionalmente baseada em barramentos. As NoCs são definidas como uma estrutura de switches e canais ponto a ponto que interconectam núcleos de propriedades intelectuais (IPs) de um SoC, provendo uma plataforma de comunicação entre os mesmos. As redes em chip sem fio (WiNoCs) são uma abordagem evolucionária do conceito de rede em chip (NoC), a qual possibilita a adoção dos mecanismos de roteamento das NoCs com o uso de tecnologias sem fio, propondo a otimização dos fluxos de tráfego, a redução de conectores e a atuação em conjunto com as NoCs tradicionais, reduzindo a carga nos barramentos. O uso do roteamento dinâmico dentro das redes em chip sem fio permite o desligamento seletivo de partes do hardware, o que reduz a energia consumida. Contudo, a escolha de onde empregar um link sem fio em uma NoC é uma tarefa complexa, dado que os nós são pontes de tráfego os quais não podem ser desligados sem potencialmente quebrar uma rota preestabelecida. Além de fornecer uma visão sobre as arquiteturas de NoCs e do estado da arte do paradigma emergente de WiNoC, este trabalho também propõe um método de avaliação baseado no já consolidado simulador ns-2, cujo objetivo é testar cenários híbridos de NoC e WiNoC. A partir desta abordagem é possível avaliar diferentes parâmetros das WiNoCs associados a aspectos de roteamento, aplicação e número de nós envolvidos em redes hierárquicas. Por meio da análise de tais simulações também é possível investigar qual estratégia de roteamento é mais recomendada para um determinado cenário de utilização, o que é relevante ao se escolher a disposição espacial dos nós em uma NoC. Os experimentos realizados são o estudo da dinâmica de funcionamento dos protocolos ad hoc de roteamento sem fio em uma topologia hierárquica de WiNoC, seguido da análise de tamanho da rede e dos padrões de tráfego na WiNoC.
Resumo:
Electronic applications are currently developed under the reuse-based paradigm. This design methodology presents several advantages for the reduction of the design complexity, but brings new challenges for the test of the final circuit. The access to embedded cores, the integration of several test methods, and the optimization of the several cost factors are just a few of the several problems that need to be tackled during test planning. Within this context, this thesis proposes two test planning approaches that aim at reducing the test costs of a core-based system by means of hardware reuse and integration of the test planning into the design flow. The first approach considers systems whose cores are connected directly or through a functional bus. The test planning method consists of a comprehensive model that includes the definition of a multi-mode access mechanism inside the chip and a search algorithm for the exploration of the design space. The access mechanism model considers the reuse of functional connections as well as partial test buses, cores transparency, and other bypass modes. The test schedule is defined in conjunction with the access mechanism so that good trade-offs among the costs of pins, area, and test time can be sought. Furthermore, system power constraints are also considered. This expansion of concerns makes it possible an efficient, yet fine-grained search, in the huge design space of a reuse-based environment. Experimental results clearly show the variety of trade-offs that can be explored using the proposed model, and its effectiveness on optimizing the system test plan. Networks-on-chip are likely to become the main communication platform of systemson- chip. Thus, the second approach presented in this work proposes the reuse of the on-chip network for the test of the cores embedded into the systems that use this communication platform. A power-aware test scheduling algorithm aiming at exploiting the network characteristics to minimize the system test time is presented. The reuse strategy is evaluated considering a number of system configurations, such as different positions of the cores in the network, power consumption constraints and number of interfaces with the tester. Experimental results show that the parallelization capability of the network can be exploited to reduce the system test time, whereas area and pin overhead are strongly minimized. In this manuscript, the main problems of the test of core-based systems are firstly identified and the current solutions are discussed. The problems being tackled by this thesis are then listed and the test planning approaches are detailed. Both test planning techniques are validated for the recently released ITC’02 SoC Test Benchmarks, and further compared to other test planning methods of the literature. This comparison confirms the efficiency of the proposed methods.
Resumo:
Alongside the advances of technologies, embedded systems are increasingly present in our everyday. Due to increasing demand for functionalities, many tasks are split among processors, requiring more efficient communication architectures, such as networks on chip (NoC). The NoCs are structures that have routers with channel point-to-point interconnect the cores of system on chip (SoC), providing communication. There are several networks on chip in the literature, each with its specific characteristics. Among these, for this work was chosen the Integrated Processing System NoC (IPNoSyS) as a network on chip with different characteristics compared to general NoCs, because their routing components also accumulate processing function, ie, units have functional able to execute instructions. With this new model, packets are processed and routed by the router architecture. This work aims at improving the performance of applications that have repetition, since these applications spend more time in their execution, which occurs through repeated execution of his instructions. Thus, this work proposes to optimize the runtime of these structures by employing a technique of instruction-level parallelism, in order to optimize the resources offered by the architecture. The applications are tested on a dedicated simulator and the results compared with the original version of the architecture, which in turn, implements only packet level parallelism
Resumo:
The constant increase of complexity in computer applications demands the development of more powerful hardware support for them. With processor's operational frequency reaching its limit, the most viable solution is the use of parallelism. Based on parallelism techniques and the progressive growth in the capacity of transistors integration in a single chip is the concept of MPSoCs (Multi-Processor System-on-Chip). MPSoCs will eventually become a cheaper and faster alternative to supercomputers and clusters, and applications developed for these high performance systems will migrate to computers equipped with MP-SoCs containing dozens to hundreds of computation cores. In particular, applications in the area of oil and natural gas exploration are also characterized by the high processing capacity required and would benefit greatly from these high performance systems. This work intends to evaluate a traditional and complex application of the oil and gas industry known as reservoir simulation, developing a solution with integrated computational systems in a single chip, with hundreds of functional unities. For this, as the STORM (MPSoC Directory-Based Platform) platform already has a shared memory model, a new distributed memory model were developed. Also a message passing library has been developed folowing MPI standard
Resumo:
The increasingly request for processing power during last years has pushed integrated circuit industry to look for ways of providing even more processing power with less heat dissipation, power consumption, and chip area. This goal has been achieved increasing the circuit clock, but since there are physical limits of this approach a new solution emerged as the multiprocessor system on chip (MPSoC). This approach demands new tools and basic software infrastructure to take advantage of the inherent parallelism of these architectures. The oil exploration industry has one of its firsts activities the project decision on exploring oil fields, those decisions are aided by reservoir simulations demanding high processing power, the MPSoC may offer greater performance if its parallelism can be well used. This work presents a proposal of a micro-kernel operating system and auxiliary libraries aimed to the STORM MPSoC platform analyzing its influence on the problem of reservoir simulation
Resumo:
Redes embutidas (NoC, Network-on-Chip) vêm sendo adotadas como uma solução interessante para o projeto de infraestruturas de comunicação em sistemas embutidos (SoC, System-on-Chip). Estas redes são em geral parametrizadas, podendo assim ser utilizadas em vários projetos de SoCs, cada qual com diferentes quantidades de núcleos. NoCs permitem uma escalabilidade dos sistemas, ao mesmo tempo que balanceiam a comunicação entre núcleos. Projetos baseados em NoC visam a implementação de uma aplicação específica. Neste contexto, ferramentas de auxílio de projeto são essenciais. Estas ferramentas são projetadas para, a partir de uma descrição simples da aplicação, realizar sucessivos processos de otimização que irão modelar as várias características do sistema. Estes algoritmos de otimização são necessários para que a rede atenda a um conjunto de restrições, como área, consumo de energia e tempo de execução. Dentre estas etapas, pode ser incluído o roteamento estático. As rotas através da rede por onde os núcleos irão se comunicar são otimizadas, de forma a minimizar o tempo de comunicação e os atrasos na transmissão de pacotes ocasionados por congestionamentos nas chaves que compõem a NoC. Nesta dissertação, foi utilizada a otimização por colônia de formigas no cálculo dos percursos. Esta é uma meta-heurística interessante para a solução de problemas de busca em grafos, inspirada no comportamento de formigas reais. Para os algoritmos propostos, múltiplas colônias são utilizadas, cada uma encarregada pela otimização do percurso de uma mensagem. Os diferentes testes realizados mostram o roteamento baseado no Elitist Ant System obtendo resultados superiores a outros algoritmos de roteamento.
Resumo:
Esta tese tem como foco principal a análise dos principais tipos de amplificação óptica e algumas de suas aplicações em sistemas de comunicação óptica. Para cada uma das tecnologias abordadas, procurou-se definir o estado da arte bem como identificar as oportunidades de desenvolvimento científico relacionadas. Os amplificadores para os quais foi dirigido alguma atenção neste documento foram os amplificadores em fibra dopada com Érbio (EDFA), os amplificadores a semicondutor (SOA) e os amplificadores de Raman (RA). Este trabalho iniciou-se com o estudo e análise dos EDFA’s. Dado o interesse científico e económico que estes amplificadores têm merecido, apenas poucos nichos de investigação estão ainda em aberto. Dentro destes, focá-mo-nos na análise de diferentes perfis de fibra óptica dopada de forma a conseguir uma optimização do desempenho dessas fibras como sistemas de amplificação. Considerando a fase anterior do trabalho como uma base de modelização para sistemas de amplificação com base em fibra e dopantes, evoluiu-se para amplificadores dopados mas em guias de onda (EDWA). Este tipo de amplificador tenta reduzir o volume físico destes dispositivos, mantendo as suas características principais. Para se ter uma forma de comparação de desempenho deste tipo de amplificador com os amplificadores em fibra, foram desenvolvidos modelos de caixa preta (BBM) e os seus parâmetros afinados por forma a termos uma boa modelização e posterior uso deste tipo de amplificiadores em setups de simulação mais complexos. Depois de modelizados e compreendidos os processo em amplificadores dopados, e com vista a adquirir uma visão global comparativa, foi imperativo passar pelo estudo dos processos de amplificação paramétrica de Raman. Esse tipo de amplificação, sendo inerente, ocorre em todas as bandas de propagação em fibra e é bastante flexível. Estes amplificadores foram inicialmente modelizados, e algumas de suas aplicações em redes passivas de acesso foram estudadas. Em especial uma série de requisitos, como por exemplo, a gama de comprimentos de onda sobre os quais existem amplificação e os altos débitos de perdas de inserção, nos levaram à investigação de um processo de amplificação que se ajustasse a eles, especialmente para buscar maiores capacidades de amplificação (nomeadamente longos alcances – superiores a 100 km – e altas razões de divisão – 1:512). Outro processo investigado foi a possibilidade de flexibilização dos parâmetros de comprimento de onda de ganho sem ter que mudar as caractísticas da bomba e se possível, mantendo toda a referenciação no transmissor. Este processo baseou-se na técnica de clamping de ganho já bastante estudada, mas com algumas modificações importantes, nomeadamente a nível do esquema (reflexão apenas num dos extremos) e da modelização do processo. O processo resultante foi inovador pelo recurso a espalhamentos de Rayleigh e Raman e o uso de um reflector de apenas um dos lados para obtenção de laser. Este processo foi modelizado através das equações de propagação e optimizado, tendo sido demonstrado experimentalmente e validado para diferentes tipos de fibras. Nesta linha, e dada a versatilidade do modelo desenvolvido, foi apresentada uma aplicação mais avançada para este tipo de amplificadores. Fazendo uso da sua resposta ultra rápida, foi proposto e analisado um regenerador 2R e analisada por simulação a sua gama de aplicação tendo em vista a sua aplicação sistémica. A parte final deste trabalho concentrou-se nos amplificadores a semiconductor (SOA). Para este tipo de amplificador, os esforços foram postos mais a nível de aplicação do que a nível de sua modelização. As aplicações principais para estes amplificadores foram baseadas em clamping óptico do ganho, visando a combinação de funções lógicas essenciais para a concepção de um latch óptico com base em componentes discretos. Assim, com base num chip de ganho, foi obtido uma porta lógica NOT, a qual foi caracterizada e demonstrada experimentalmente. Esta foi ainda introduzida num esquema de latching de forma a produzir um bi-estável totalmente óptico, o qual também foi demonstrado e caracterizado. Este trabalho é finalizado com uma conclusão geral relatando os subsistemas de amplificação e suas aplicacações.
Resumo:
The number of applications based on embedded systems grows significantly every year, even with the fact that embedded systems have restrictions, and simple processing units, the performance of these has improved every day. However the complexity of applications also increase, a better performance will always be necessary. So even such advances, there are cases, which an embedded system with a single unit of processing is not sufficient to achieve the information processing in real time. To improve the performance of these systems, an implementation with parallel processing can be used in more complex applications that require high performance. The idea is to move beyond applications that already use embedded systems, exploring the use of a set of units processing working together to implement an intelligent algorithm. The number of existing works in the areas of parallel processing, systems intelligent and embedded systems is wide. However works that link these three areas to solve any problem are reduced. In this context, this work aimed to use tools available for FPGA architectures, to develop a platform with multiple processors to use in pattern classification with artificial neural networks
Resumo:
La temperatura es una preocupación que juega un papel protagonista en el diseño de circuitos integrados modernos. El importante aumento de las densidades de potencia que conllevan las últimas generaciones tecnológicas ha producido la aparición de gradientes térmicos y puntos calientes durante el funcionamiento normal de los chips. La temperatura tiene un impacto negativo en varios parámetros del circuito integrado como el retardo de las puertas, los gastos de disipación de calor, la fiabilidad, el consumo de energía, etc. Con el fin de luchar contra estos efectos nocivos, la técnicas de gestión dinámica de la temperatura (DTM) adaptan el comportamiento del chip en función en la información que proporciona un sistema de monitorización que mide en tiempo de ejecución la información térmica de la superficie del dado. El campo de la monitorización de la temperatura en el chip ha llamado la atención de la comunidad científica en los últimos años y es el objeto de estudio de esta tesis. Esta tesis aborda la temática de control de la temperatura en el chip desde diferentes perspectivas y niveles, ofreciendo soluciones a algunos de los temas más importantes. Los niveles físico y circuital se cubren con el diseño y la caracterización de dos nuevos sensores de temperatura especialmente diseñados para los propósitos de las técnicas DTM. El primer sensor está basado en un mecanismo que obtiene un pulso de anchura variable dependiente de la relación de las corrientes de fuga con la temperatura. De manera resumida, se carga un nodo del circuito y posteriormente se deja flotando de tal manera que se descarga a través de las corrientes de fugas de un transistor; el tiempo de descarga del nodo es la anchura del pulso. Dado que la anchura del pulso muestra una dependencia exponencial con la temperatura, la conversión a una palabra digital se realiza por medio de un contador logarítmico que realiza tanto la conversión tiempo a digital como la linealización de la salida. La estructura resultante de esta combinación de elementos se implementa en una tecnología de 0,35 _m. El sensor ocupa un área muy reducida, 10.250 nm2, y consume muy poca energía, 1.05-65.5nW a 5 muestras/s, estas cifras superaron todos los trabajos previos en el momento en que se publicó por primera vez y en el momento de la publicación de esta tesis, superan a todas las implementaciones anteriores fabricadas en el mismo nodo tecnológico. En cuanto a la precisión, el sensor ofrece una buena linealidad, incluso sin calibrar; se obtiene un error 3_ de 1,97oC, adecuado para tratar con las aplicaciones de DTM. Como se ha explicado, el sensor es completamente compatible con los procesos de fabricación CMOS, este hecho, junto con sus valores reducidos de área y consumo, lo hacen especialmente adecuado para la integración en un sistema de monitorización de DTM con un conjunto de monitores empotrados distribuidos a través del chip. Las crecientes incertidumbres de proceso asociadas a los últimos nodos tecnológicos comprometen las características de linealidad de nuestra primera propuesta de sensor. Con el objetivo de superar estos problemas, proponemos una nueva técnica para obtener la temperatura. La nueva técnica también está basada en las dependencias térmicas de las corrientes de fuga que se utilizan para descargar un nodo flotante. La novedad es que ahora la medida viene dada por el cociente de dos medidas diferentes, en una de las cuales se altera una característica del transistor de descarga |la tensión de puerta. Este cociente resulta ser muy robusto frente a variaciones de proceso y, además, la linealidad obtenida cumple ampliamente los requisitos impuestos por las políticas DTM |error 3_ de 1,17oC considerando variaciones del proceso y calibrando en dos puntos. La implementación de la parte sensora de esta nueva técnica implica varias consideraciones de diseño, tales como la generación de una referencia de tensión independiente de variaciones de proceso, que se analizan en profundidad en la tesis. Para la conversión tiempo-a-digital, se emplea la misma estructura de digitalización que en el primer sensor. Para la implementación física de la parte de digitalización, se ha construido una biblioteca de células estándar completamente nueva orientada a la reducción de área y consumo. El sensor resultante de la unión de todos los bloques se caracteriza por una energía por muestra ultra baja (48-640 pJ) y un área diminuta de 0,0016 mm2, esta cifra mejora todos los trabajos previos. Para probar esta afirmación, se realiza una comparación exhaustiva con más de 40 propuestas de sensores en la literatura científica. Subiendo el nivel de abstracción al sistema, la tercera contribución se centra en el modelado de un sistema de monitorización que consiste de un conjunto de sensores distribuidos por la superficie del chip. Todos los trabajos anteriores de la literatura tienen como objetivo maximizar la precisión del sistema con el mínimo número de monitores. Como novedad, en nuestra propuesta se introducen nuevos parámetros de calidad aparte del número de sensores, también se considera el consumo de energía, la frecuencia de muestreo, los costes de interconexión y la posibilidad de elegir diferentes tipos de monitores. El modelo se introduce en un algoritmo de recocido simulado que recibe la información térmica de un sistema, sus propiedades físicas, limitaciones de área, potencia e interconexión y una colección de tipos de monitor; el algoritmo proporciona el tipo seleccionado de monitor, el número de monitores, su posición y la velocidad de muestreo _optima. Para probar la validez del algoritmo, se presentan varios casos de estudio para el procesador Alpha 21364 considerando distintas restricciones. En comparación con otros trabajos previos en la literatura, el modelo que aquí se presenta es el más completo. Finalmente, la última contribución se dirige al nivel de red, partiendo de un conjunto de monitores de temperatura de posiciones conocidas, nos concentramos en resolver el problema de la conexión de los sensores de una forma eficiente en área y consumo. Nuestra primera propuesta en este campo es la introducción de un nuevo nivel en la jerarquía de interconexión, el nivel de trillado (o threshing en inglés), entre los monitores y los buses tradicionales de periféricos. En este nuevo nivel se aplica selectividad de datos para reducir la cantidad de información que se envía al controlador central. La idea detrás de este nuevo nivel es que en este tipo de redes la mayoría de los datos es inútil, porque desde el punto de vista del controlador sólo una pequeña cantidad de datos |normalmente sólo los valores extremos| es de interés. Para cubrir el nuevo nivel, proponemos una red de monitorización mono-conexión que se basa en un esquema de señalización en el dominio de tiempo. Este esquema reduce significativamente tanto la actividad de conmutación sobre la conexión como el consumo de energía de la red. Otra ventaja de este esquema es que los datos de los monitores llegan directamente ordenados al controlador. Si este tipo de señalización se aplica a sensores que realizan conversión tiempo-a-digital, se puede obtener compartición de recursos de digitalización tanto en tiempo como en espacio, lo que supone un importante ahorro de área y consumo. Finalmente, se presentan dos prototipos de sistemas de monitorización completos que de manera significativa superan la características de trabajos anteriores en términos de área y, especialmente, consumo de energía. Abstract Temperature is a first class design concern in modern integrated circuits. The important increase in power densities associated to recent technology evolutions has lead to the apparition of thermal gradients and hot spots during run time operation. Temperature impacts several circuit parameters such as speed, cooling budgets, reliability, power consumption, etc. In order to fight against these negative effects, dynamic thermal management (DTM) techniques adapt the behavior of the chip relying on the information of a monitoring system that provides run-time thermal information of the die surface. The field of on-chip temperature monitoring has drawn the attention of the scientific community in the recent years and is the object of study of this thesis. This thesis approaches the matter of on-chip temperature monitoring from different perspectives and levels, providing solutions to some of the most important issues. The physical and circuital levels are covered with the design and characterization of two novel temperature sensors specially tailored for DTM purposes. The first sensor is based upon a mechanism that obtains a pulse with a varying width based on the variations of the leakage currents on the temperature. In a nutshell, a circuit node is charged and subsequently left floating so that it discharges away through the subthreshold currents of a transistor; the time the node takes to discharge is the width of the pulse. Since the width of the pulse displays an exponential dependence on the temperature, the conversion into a digital word is realized by means of a logarithmic counter that performs both the timeto- digital conversion and the linearization of the output. The structure resulting from this combination of elements is implemented in a 0.35_m technology and is characterized by very reduced area, 10250 nm2, and power consumption, 1.05-65.5 nW at 5 samples/s, these figures outperformed all previous works by the time it was first published and still, by the time of the publication of this thesis, they outnumber all previous implementations in the same technology node. Concerning the accuracy, the sensor exhibits good linearity, even without calibration it displays a 3_ error of 1.97oC, appropriate to deal with DTM applications. As explained, the sensor is completely compatible with standard CMOS processes, this fact, along with its tiny area and power overhead, makes it specially suitable for the integration in a DTM monitoring system with a collection of on-chip monitors distributed across the chip. The exacerbated process fluctuations carried along with recent technology nodes jeop-ardize the linearity characteristics of the first sensor. In order to overcome these problems, a new temperature inferring technique is proposed. In this case, we also rely on the thermal dependencies of leakage currents that are used to discharge a floating node, but now, the result comes from the ratio of two different measures, in one of which we alter a characteristic of the discharging transistor |the gate voltage. This ratio proves to be very robust against process variations and displays a more than suficient linearity on the temperature |1.17oC 3_ error considering process variations and performing two-point calibration. The implementation of the sensing part based on this new technique implies several issues, such as the generation of process variations independent voltage reference, that are analyzed in depth in the thesis. In order to perform the time-to-digital conversion, we employ the same digitization structure the former sensor used. A completely new standard cell library targeting low area and power overhead is built from scratch to implement the digitization part. Putting all the pieces together, we achieve a complete sensor system that is characterized by ultra low energy per conversion of 48-640pJ and area of 0.0016mm2, this figure outperforms all previous works. To prove this statement, we perform a thorough comparison with over 40 works from the scientific literature. Moving up to the system level, the third contribution is centered on the modeling of a monitoring system consisting of set of thermal sensors distributed across the chip. All previous works from the literature target maximizing the accuracy of the system with the minimum number of monitors. In contrast, we introduce new metrics of quality apart form just the number of sensors; we consider the power consumption, the sampling frequency, the possibility to consider different types of monitors and the interconnection costs. The model is introduced in a simulated annealing algorithm that receives the thermal information of a system, its physical properties, area, power and interconnection constraints and a collection of monitor types; the algorithm yields the selected type of monitor, the number of monitors, their position and the optimum sampling rate. We test the algorithm with the Alpha 21364 processor under several constraint configurations to prove its validity. When compared to other previous works in the literature, the modeling presented here is the most complete. Finally, the last contribution targets the networking level, given an allocated set of temperature monitors, we focused on solving the problem of connecting them in an efficient way from the area and power perspectives. Our first proposal in this area is the introduction of a new interconnection hierarchy level, the threshing level, in between the monitors and the traditional peripheral buses that applies data selectivity to reduce the amount of information that is sent to the central controller. The idea behind this new level is that in this kind of networks most data are useless because from the controller viewpoint just a small amount of data |normally extreme values| is of interest. To cover the new interconnection level, we propose a single-wire monitoring network based on a time-domain signaling scheme that significantly reduces both the switching activity over the wire and the power consumption of the network. This scheme codes the information in the time domain and allows a straightforward obtention of an ordered list of values from the maximum to the minimum. If the scheme is applied to monitors that employ TDC, digitization resource sharing is achieved, producing an important saving in area and power consumption. Two prototypes of complete monitoring systems are presented, they significantly overcome previous works in terms of area and, specially, power consumption.
Resumo:
With the growing demand of data traffic in the networks of third generation (3G), the mobile operators have attempted to focus resources on infrastructure in places where it identifies a greater need. The channeling investments aim to maintain the quality of service especially in dense urban areas. WCDMA - HSPA parameters Rx Power, RSCP (Received Signal Code Power), Ec/Io (Energy per chip/Interference) and transmission rate (throughput) at the physical layer are analyzed. In this work the prediction of time series on HSPA network is performed. The collection of values of the parameters was performed on a fully operational network through a drive test in Natal - RN, a capital city of Brazil northeastern. The models used for prediction of time series were the Simple Exponential Smoothing, Holt, Holt Winters Additive and Holt Winters Multiplicative. The objective of the predictions of the series is to check which model will generate the best predictions of network parameters WCDMA - HSPA.