973 resultados para Reconhecimento de Voz
Resumo:
Este trabalho relata o desenvolvimento de uma aplicação capaz de reconhecer um vocabulário restrito de comandos de direcionamento pronunciados de forma isolada e independentes do locutor. Os métodos utilizados para efetivar o reconhecimento foram: técnicas clássicas de processamento de sinais e redes neurais artificiais. No processamento de sinais visou-se o pré-processamento das amostras para obtenção dos coeficientes cepstrais. Enquanto que para o treinamento e classificação foram utilizadas duas redes neurais distintas, as redes: Backpropagation e Fuzzy ARTMAP. Diversas amostras foram coletadas de diferentes usuários no sentido de compor um banco de dados flexível para o aprendizado das redes neurais, que garantisse uma representação satisfatória da grande variabilidade que apresentam as pronúncias entre as vozes dos usuários. Com a aplicação de tais técnicas, o reconhecimento demostrou-se eficaz, distinguindo cada um dos comandos com bons índices de acerto, uma vez que o sistema é independente do locutor.
Resumo:
The automatic speech recognition by machine has been the target of researchers in the past five decades. In this period have been numerous advances, such as in the field of recognition of isolated words (commands), which has very high rates of recognition, currently. However, we are still far from developing a system that could have a performance similar to the human being (automatic continuous speech recognition). One of the great challenges of searches for continuous speech recognition is the large amount of pattern. The modern languages such as English, French, Spanish and Portuguese have approximately 500,000 words or patterns to be identified. The purpose of this study is to use smaller units than the word such as phonemes, syllables and difones units as the basis for the speech recognition, aiming to recognize any words without necessarily using them. The main goal is to reduce the restriction imposed by the excessive amount of patterns. In order to validate this proposal, the system was tested in the isolated word recognition in dependent-case. The phonemes characteristics of the Brazil s Portuguese language were used to developed the hierarchy decision system. These decisions are made through the use of neural networks SVM (Support Vector Machines). The main speech features used were obtained from the Wavelet Packet Transform. The descriptors MFCC (Mel-Frequency Cepstral Coefficient) are also used in this work. It was concluded that the method proposed in this work, showed good results in the steps of recognition of vowels, consonants (syllables) and words when compared with other existing methods in literature
Resumo:
O processamento de voz tornou-se uma tecnologia cada vez mais baseada na modelagem automática de vasta quantidade de dados. Desta forma, o sucesso das pesquisas nesta área está diretamente ligado a existência de corpora de domínio público e outros recursos específicos, tal como um dicionário fonético. No Brasil, ao contrário do que acontece para a língua inglesa, por exemplo, não existe atualmente em domínio público um sistema de Reconhecimento Automático de Voz (RAV) para o Português Brasileiro com suporte a grandes vocabulários. Frente a este cenário, o trabalho tem como principal objetivo discutir esforços dentro da iniciativa FalaBrasil [1], criada pelo Laboratório de Processamento de Sinais (LaPS) da UFPA, apresentando pesquisas e softwares na área de RAV para o Português do Brasil. Mais especificamente, o presente trabalho discute a implementação de um sistema de reconhecimento de voz com suporte a grandes vocabulários para o Português do Brasil, utilizando a ferramenta HTK baseada em modelo oculto de Markov (HMM) e a criação de um módulo de conversão grafema-fone, utilizando técnicas de aprendizado de máquina.
Resumo:
Descreve a implementação de um software de reconhecimento de voz para o Português Brasileiro. Dentre os objetivos do trabalho tem-se a construção de um sistema de voz contínua para grandes vocabulários, apto a ser usado em aplicações em tempo-real. São apresentados os principais conceitos e características de tais sistemas, além de todos os passos necessários para construção. Como parte desse trabalho foram produzidos e disponibilizados vários recursos: modelos acústicos e de linguagem, novos corpora de voz e texto. O corpus de texto vem sendo construído através da extração e formatação automática de textos de jornais na Internet. Além disso, foram produzidos dois corpora de voz, um baseado em audiobooks e outro produzido especificamente para simular testes em tempo-real. O trabalho também propõe a utilização de técnicas de adaptação de locutor para resolução de problemas de descasamento acústico entre corpora de voz. Por último, é apresentada uma interface de programação de aplicativos que busca facilitar a utilização do decodificador Julius. Testes de desempenho são apresentados, comparando os sistemas desenvolvidos e um software comercial.
Resumo:
In many movies of scientific fiction, machines were capable of speaking with humans. However mankind is still far away of getting those types of machines, like the famous character C3PO of Star Wars. During the last six decades the automatic speech recognition systems have been the target of many studies. Throughout these years many technics were developed to be used in applications of both software and hardware. There are many types of automatic speech recognition system, among which the one used in this work were the isolated word and independent of the speaker system, using Hidden Markov Models as the recognition system. The goals of this work is to project and synthesize the first two steps of the speech recognition system, the steps are: the speech signal acquisition and the pre-processing of the signal. Both steps were developed in a reprogrammable component named FPGA, using the VHDL hardware description language, owing to the high performance of this component and the flexibility of the language. In this work it is presented all the theory of digital signal processing, as Fast Fourier Transforms and digital filters and also all the theory of speech recognition using Hidden Markov Models and LPC processor. It is also presented all the results obtained for each one of the blocks synthesized e verified in hardware
Resumo:
Sistemas de reconhecimento e síntese de voz são constituídos por módulos que dependem da língua e, enquanto existem muitos recursos públicos para alguns idiomas (p.e. Inglês e Japonês), os recursos para Português Brasileiro (PB) ainda são escassos. Outro aspecto é que, para um grande número de tarefas, a taxa de erro dos sistemas de reconhecimento de voz atuais ainda é elevada, quando comparada à obtida por seres humanos. Assim, apesar do sucesso das cadeias escondidas de Markov (HMM), é necessária a pesquisa por novos métodos. Este trabalho tem como motivação esses dois fatos e se divide em duas partes. A primeira descreve o desenvolvimento de recursos e ferramentas livres para reconhecimento e síntese de voz em PB, consistindo de bases de dados de áudio e texto, um dicionário fonético, um conversor grafema-fone, um separador silábico e modelos acústico e de linguagem. Todos os recursos construídos encontram-se publicamente disponíveis e, junto com uma interface de programação proposta, têm sido usados para o desenvolvimento de várias novas aplicações em tempo-real, incluindo um módulo de reconhecimento de voz para a suíte de aplicativos para escritório OpenOffice.org. São apresentados testes de desempenho dos sistemas desenvolvidos. Os recursos aqui produzidos e disponibilizados facilitam a adoção da tecnologia de voz para PB por outros grupos de pesquisa, desenvolvedores e pela indústria. A segunda parte do trabalho apresenta um novo método para reavaliar (rescoring) o resultado do reconhecimento baseado em HMMs, o qual é organizado em uma estrutura de dados do tipo lattice. Mais especificamente, o sistema utiliza classificadores discriminativos que buscam diminuir a confusão entre pares de fones. Para cada um desses problemas binários, são usadas técnicas de seleção automática de parâmetros para escolher a representaçãao paramétrica mais adequada para o problema em questão.
Resumo:
O reconhecimento automático de voz vem sendo cada vez mais útil e possível. Quando se trata de línguas como a Inglesa, encontram-se no mercado excelentes reconhecedores. Porem, a situação não e a mesma para o Português Brasileiro, onde os principais reconhecedores para ditado em sistemas desktop que já existiram foram descontinuados. A presente dissertação alinha-se com os objetivos do Laboratório de Processamento de Sinais da Universidade Federal do Pará, que é o desenvolvimento de um reconhecedor automático de voz para Português Brasileiro. Mais especificamente, as principais contribuições dessa dissertação são: o desenvolvimento de alguns recursos necessários para a construção de um reconhecedor, tais como: bases de áudio transcrito e API para desenvolvimento de aplicações; e o desenvolvimento de duas aplicações: uma para ditado em sistema desktop e outra para atendimento automático em um call center. O Coruja, sistema desenvolvido no LaPS para reconhecimento de voz em Português Brasileiro. Este alem de conter todos os recursos para fornecer reconhecimento de voz em Português Brasileiro possui uma API para desenvolvimento de aplicativos. O aplicativo desenvolvido para ditado e edição de textos em desktop e o SpeechOO, este possibilita o ditado para a ferramenta Writer do pacote LibreOffice, alem de permitir a edição e formatação de texto com comandos de voz. Outra contribuição deste trabalho e a utilização de reconhecimento automático de voz em call centers, o Coruja foi integrado ao software Asterisk e a principal aplicação desenvolvida foi uma unidade de resposta audível com reconhecimento de voz para o atendimento de um call center nacional que atende mais de 3 mil ligações diárias.
Resumo:
Tese dout., Engenharia Electrónica e Computação, Universidade do Algarve, 2009
Resumo:
Sistema Texto-Fala (TTS) é atualmente uma tecnologia madura que é utilizada em muitas aplicações. Alguns módulos de um sistema TTS são dependentes do idioma e, enquanto existem muitos recursos disponíveis para a língua inglesa, os recursos para alguns idiomas ainda são limitados. Este trabalho descreve o desenvolvimento de um sistema TTS completo para português brasileiro (PB), o qual também apresenta os recursos já disponíveis. O sistema usa a plataforma MARY e o processo de síntese da voz é baseado em cadeias escondidas de Markov (HMM). Algumas das contribuições deste trabalho consistem na implementação de silabação, determinação da sílaba tônica e conversão grafema-fonema (G2P). O trabalho também descreve as etapas para a organização dos recursos desenvolvidos e a criação de uma voz em PB junto ao MARY. Estes recursos estão disponíveis e facilita a pesquisa na normalização de texto e síntese baseada em HMM par o PB.
Resumo:
A integração de sistemas é um tema sempre actual na temática das tecnologias de informação. Desde há muito tempo que as grandes empresas identificaram a necessidade de integrar dados de diferentes sistemas, criando mais valor para os seus negócios. Alguns sectores da indústria estão claramente mais avançados do que outros no que diz respeito à integração de sistemas. Alguns factores, como a concorrência e competitividade mais agressiva em alguns mercados, foram os catalisadores desses avanços tecnológicos. A indústria da saúde não foi, infelizmente, um dos sectores onde se registaram grandes avanços na integração de sistemas. Foi, no entanto, onde se registou uma explosão de normas e protocolos que suportam as diversas disciplinas da medicina, como por ex, a Radiologia. Essas normas e protocolos permitiram dotar a medicina de meios mais rigorosos de produzir diagnósticos e encontrar curas para as mais diversas patologias. Existem muitos produtos que adoptam estas normas. As organizações foram, progressivamente, adquirindo esses produtos mas sem grande preocupação da eventual necessidade da integração. A disciplina da Radiologia é uma das disciplinas onde se verifica, ainda hoje, uma enorme diversidade de equipamentos e sistemas de informação mas onde se encontra desafios consideráveis no que diz respeito à integração. Foram esses desafios que despoletaram o interesse de investigação e cujos resultados se partilham nesta dissertação.
Resumo:
A transcrição é uma atividade geralmente subestimada, que surge muitas vezes aliada, numa fase posterior, à tradução. O presente projeto apresenta a transcrição e a tradução como duas tarefas que se complementam, quando aplicadas à área jurídica. Por outro lado, aborda os tipos de transcrição, bem como o recurso aos softwares de reconhecimento de voz para efetuar esta tarefa. Nele se reflete, ainda, sobre os desafios da tradução jurídica e, mais concretamente, sobre as dificuldades encontradas por quem traduz um texto cujo ponto de partida é a transcrição.
Resumo:
A comunicação verbal humana é realizada em dois sentidos, existindo uma compreensão de ambas as partes que resulta em determinadas considerações. Este tipo de comunicação, também chamada de diálogo, para além de agentes humanos pode ser constituído por agentes humanos e máquinas. A interação entre o Homem e máquinas, através de linguagem natural, desempenha um papel importante na melhoria da comunicação entre ambos. Com o objetivo de perceber melhor a comunicação entre Homem e máquina este documento apresenta vários conhecimentos sobre sistemas de conversação Homemmáquina, entre os quais, os seus módulos e funcionamento, estratégias de diálogo e desafios a ter em conta na sua implementação. Para além disso, são ainda apresentados vários sistemas de Speech Recognition, Speech Synthesis e sistemas que usam conversação Homem-máquina. Por último são feitos testes de performance sobre alguns sistemas de Speech Recognition e de forma a colocar em prática alguns conceitos apresentados neste trabalho, é apresentado a implementação de um sistema de conversação Homem-máquina. Sobre este trabalho várias ilações foram obtidas, entre as quais, a alta complexidade dos sistemas de conversação Homem-máquina, a baixa performance no reconhecimento de voz em ambientes com ruído e as barreiras que se podem encontrar na implementação destes sistemas.
Resumo:
Este trabalho foi realizado dentro da área de reconhecimento automático de voz (RAV). Atualmente, a maioria dos sistemas de RAV é baseada nos modelos ocultos de Markov (HMMs) [GOM 99] [GOM 99b], quer utilizando-os exclusivamente, quer utilizando-os em conjunto com outras técnicas e constituindo sistemas híbridos. A abordagem estatística dos HMMs tem mostrado ser uma das mais poderosas ferramentas disponíveis para a modelagem acústica e temporal do sinal de voz. A melhora da taxa de reconhecimento exige algoritmos mais complexos [RAV 96]. O aumento do tamanho do vocabulário ou do número de locutores exige um processamento computacional adicional. Certas aplicações, como a verificação de locutor ou o reconhecimento de diálogo podem exigir processamento em tempo real [DOD 85] [MAM 96]. Outras aplicações tais como brinquedos ou máquinas portáveis ainda podem agregar o requisito de portabilidade, e de baixo consumo, além de um sistema fisicamente compacto. Tais necessidades exigem uma solução em hardware. O presente trabalho propõe a implementação de um sistema de RAV utilizando hardware baseado em FPGAs (Field Programmable Gate Arrays) e otimizando os algoritmos que se utilizam no RAV. Foi feito um estudo dos sistemas de RAV e das técnicas que a maioria dos sistemas utiliza em cada etapa que os conforma. Deu-se especial ênfase aos Modelos Ocultos de Markov, seus algoritmos de cálculo de probabilidades, de treinamento e de decodificação de estados, e sua aplicação nos sistemas de RAV. Foi realizado um estudo comparativo dos sistemas em hardware, produzidos por outros centros de pesquisa, identificando algumas das suas características mais relevantes. Foi implementado um modelo de software, descrito neste trabalho, utilizado para validar os algoritmos de RAV e auxiliar na especificação em hardware. Um conjunto de funções digitais implementadas em FPGA, necessárias para o desenvolvimento de sistemas de RAV é descrito. Foram realizadas algumas modificações nos algoritmos de RAV para facilitar a implementação digital dos mesmos. A conexão, entre as funções digitais projetadas, para a implementação de um sistema de reconhecimento de palavras isoladas é aqui apresentado. A implementação em FPGA da etapa de pré-processamento, que inclui a pré-ênfase, janelamento e extração de características, e a implementação da etapa de reconhecimento são apresentadas finalmente neste trabalho.
Resumo:
Pós-graduação em Educação - FFC
Resumo:
A fala é um mecanismo natural para a interação homem-máquina. A tecnologia de processamento de fala (ou voz) encontra-se bastante avançada e, em escala mundial, existe vasta disponibilidade de software, tanto comercial quanto acadêmico. a maioria assume a disponibilidade de um reconhecedor e/ou sintetizador, que pode ser programado via API. Ao contrário do que ocorre, por exemplo, na língua inglesa, inexiste atualmente uma gama variada de recursos para o português brasileiro. O presente trabalho discute alguns esforços realizados nesse sentido, avaliando a utilização da SAPI E JSAPI, que são as APIs da Microsoft e Sun, respectivamente. Serão apresentados, outrossim, exemplos de aplicativos: uma aplicação CALL (baseada em SAPI) usando síntese em inglês e português, reconhecimento em inglês e agentes visuais; e uma proposta para agregar reconhecimento e síntese de voz ao chat IRC através de APIs Java.