973 resultados para Reconhecimento : Voz


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabalho foi realizado dentro da área de reconhecimento automático de voz (RAV). Atualmente, a maioria dos sistemas de RAV é baseada nos modelos ocultos de Markov (HMMs) [GOM 99] [GOM 99b], quer utilizando-os exclusivamente, quer utilizando-os em conjunto com outras técnicas e constituindo sistemas híbridos. A abordagem estatística dos HMMs tem mostrado ser uma das mais poderosas ferramentas disponíveis para a modelagem acústica e temporal do sinal de voz. A melhora da taxa de reconhecimento exige algoritmos mais complexos [RAV 96]. O aumento do tamanho do vocabulário ou do número de locutores exige um processamento computacional adicional. Certas aplicações, como a verificação de locutor ou o reconhecimento de diálogo podem exigir processamento em tempo real [DOD 85] [MAM 96]. Outras aplicações tais como brinquedos ou máquinas portáveis ainda podem agregar o requisito de portabilidade, e de baixo consumo, além de um sistema fisicamente compacto. Tais necessidades exigem uma solução em hardware. O presente trabalho propõe a implementação de um sistema de RAV utilizando hardware baseado em FPGAs (Field Programmable Gate Arrays) e otimizando os algoritmos que se utilizam no RAV. Foi feito um estudo dos sistemas de RAV e das técnicas que a maioria dos sistemas utiliza em cada etapa que os conforma. Deu-se especial ênfase aos Modelos Ocultos de Markov, seus algoritmos de cálculo de probabilidades, de treinamento e de decodificação de estados, e sua aplicação nos sistemas de RAV. Foi realizado um estudo comparativo dos sistemas em hardware, produzidos por outros centros de pesquisa, identificando algumas das suas características mais relevantes. Foi implementado um modelo de software, descrito neste trabalho, utilizado para validar os algoritmos de RAV e auxiliar na especificação em hardware. Um conjunto de funções digitais implementadas em FPGA, necessárias para o desenvolvimento de sistemas de RAV é descrito. Foram realizadas algumas modificações nos algoritmos de RAV para facilitar a implementação digital dos mesmos. A conexão, entre as funções digitais projetadas, para a implementação de um sistema de reconhecimento de palavras isoladas é aqui apresentado. A implementação em FPGA da etapa de pré-processamento, que inclui a pré-ênfase, janelamento e extração de características, e a implementação da etapa de reconhecimento são apresentadas finalmente neste trabalho.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As técnicas utilizadas em sistemas de reconhecimento automático de locutor (RAL) objetivam identificar uma pessoa através de sua voz, utilizando recursos computacionais. Isso é feito a partir de um modelamento para o processo de produção da voz. A modelagem detalhada desse processo deve levar em consideração a variação temporal da forma do trato vocal, as ressonâncias associadas à sua fisiologia, perdas devidas ao atrito viscoso nas paredes internas do trato vocal, suavidade dessas paredes internas, radiação do som nos lábios, acoplamento nasal, flexibilidade associada à vibração das cordas vocais, etc. Alguns desses fatores são modelados por um sistema que combina uma fonte de excitação periódica e outra de ruído branco, aplicadas a um filtro digital variante no tempo. Entretanto, outros fatores são desconsiderados nesse modelamento, pela simples dificuldade ou até impossibilidade de descrevê-los em termos de combinações de sinais, filtros digitais, ou equações diferenciais. Por outro lado, a Teoria dos Sistemas Dinâmicos Não-Lineares ou Teoria do Caos oferece técnicas para a análise de sinais onde não se sabe, ou não é conhecido, o modelo detalhado do mecanismo de produção desses sinais. A análise através dessa teoria procura avaliar a dinâmica do sinal e, assumindo-se que tais amostras provêm de um sistema dinâmico não-linear, medidas qualitativas podem ser obtidas desse sistema. Essas medidas não fornecem informações precisas quanto ao modelamento do processo de produção do sinal avaliado, isto é, o modelo analítico é ainda inacessível. Entretanto, pode-se aferir a respeito de suaO problema analisado ao longo deste trabalho trata da busca de novos métodos para extrair informações úteis a respeito do locutor que produziu um determinado sinal de voz. Com isso, espera-se conceber sistemas que realizem a tarefa de reconhecer um pessoa automaticamente através de sua voz de forma mais exata, segura e robusta, contribuindo para o surgimento de sistemas de RAL com aplicação prática. Para isso, este trabalho propõe a utilização de novas ferramentas, baseadas na Teoria dos Sistemas Dinâmicos Não-Lineares, para melhorar a caracterização de uma pessoa através de sua voz. Assim, o mecanismo de produção do sinal de voz é analisado sob outro ponto de vista, como sendo o produto de um sistema dinâmico que evolui em um espaço de fases apropriado. Primeiramente, a possibilidade de utilização dessas técnicas em sinais de voz é verificada. A seguir, demonstra-se como as técnicas para estimação de invariantes dinâmicas não-lineares podem ser adaptadas para que possam ser utilizadas em sistemas de RAL. Por fim, adaptações e automatizações algorítmicas para extração de invariantes dinâmicas são sugeridas para o tratamento de sinais de voz. A comprovação da eficácia dessa metodologia se deu pela realização de testes comparativos de exatidão que, de forma estatisticamente significativa, mostraram o benefício advindo das modificações sugeridas. A melhora obtida com o acréscimo de invariantes dinâmicas da forma proposta no sistema de RAL utilizado nos testes resultou na diminuição da taxa de erro igual (EER) em 17,65%, acarretando um intrínseco aumento de processamento. Para sinais de voz contaminados com ruído, o benefício atingido com o sistema proposto foi verificado para relações sinal ruído (SNRs) maiores que aproximadamente 5 dB. O avanço científico potencial advindo dos resultados alcançados com este trabalho não se limita às invariantes dinâmicas utilizadas, e nem mesmo à caracterização de locutores. A comprovação da possibilidade de utilização de técnicas da Teoria do Caos em sinais de voz permitirá expandir os conceitos utilizados em qualquer sistema que processe digitalmente sinais de voz. O avanço das técnicas de Sistemas Dinâmicos Não-Lineares, como a concepção de invariantes dinâmicas mais representativas e robustas, implicará também no avanço dos sistemas que utilizarem esse novo conceito para tratamento de sinais vocais.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta Tese apresenta a investigação de técnicas computacionais que permitam a simulação computacional da compreensão de frases faladas. Esta investigação é baseada em estudos neurocognitivos que descrevem o processamento do cérebro ao interpretar a audição de frases. A partir destes estudos, realiza-se a proposição do COMFALA, um modelo computacional para representação do processo de compreensão da fala. O COMFALA possui quatro módulos, correspondentes às fases do processamento cerebral: processamento do sinal de fala, análise sintática, análise semântica e avaliação das respostas das análises. Para validação do modelo são propostas implementações para cada módulo do COMFALA. A codificação do sinal se dá através das transformadas ondeletas (wavelets transforms), as quais permitem uma representação automática de padrões para sistemas conexionistas (redes neurais artificiais) responsáveis pela análise sintática e semântica da linguagem. Para a análise sintática foi adaptado um sistema conexionista de linguagem escrita. Por outro lado, o sistema conexionista de análise semântica realiza agrupamentos por características prosódicas e fonéticas do sinal. Ao final do processo, compara-se a saída sintática com a semântica, na busca de uma melhor interpretação da fala.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Este trabalho relata o desenvolvimento de uma aplicação capaz de reconhecer um vocabulário restrito de comandos de direcionamento pronunciados de forma isolada e independentes do locutor. Os métodos utilizados para efetivar o reconhecimento foram: técnicas clássicas de processamento de sinais e redes neurais artificiais. No processamento de sinais visou-se o pré-processamento das amostras para obtenção dos coeficientes cepstrais. Enquanto que para o treinamento e classificação foram utilizadas duas redes neurais distintas, as redes: Backpropagation e Fuzzy ARTMAP. Diversas amostras foram coletadas de diferentes usuários no sentido de compor um banco de dados flexível para o aprendizado das redes neurais, que garantisse uma representação satisfatória da grande variabilidade que apresentam as pronúncias entre as vozes dos usuários. Com a aplicação de tais técnicas, o reconhecimento demostrou-se eficaz, distinguindo cada um dos comandos com bons índices de acerto, uma vez que o sistema é independente do locutor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The automatic speech recognition by machine has been the target of researchers in the past five decades. In this period have been numerous advances, such as in the field of recognition of isolated words (commands), which has very high rates of recognition, currently. However, we are still far from developing a system that could have a performance similar to the human being (automatic continuous speech recognition). One of the great challenges of searches for continuous speech recognition is the large amount of pattern. The modern languages such as English, French, Spanish and Portuguese have approximately 500,000 words or patterns to be identified. The purpose of this study is to use smaller units than the word such as phonemes, syllables and difones units as the basis for the speech recognition, aiming to recognize any words without necessarily using them. The main goal is to reduce the restriction imposed by the excessive amount of patterns. In order to validate this proposal, the system was tested in the isolated word recognition in dependent-case. The phonemes characteristics of the Brazil s Portuguese language were used to developed the hierarchy decision system. These decisions are made through the use of neural networks SVM (Support Vector Machines). The main speech features used were obtained from the Wavelet Packet Transform. The descriptors MFCC (Mel-Frequency Cepstral Coefficient) are also used in this work. It was concluded that the method proposed in this work, showed good results in the steps of recognition of vowels, consonants (syllables) and words when compared with other existing methods in literature

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pós-graduação em Educação - FFC

Relevância:

40.00% 40.00%

Publicador:

Resumo:

O processamento de voz tornou-se uma tecnologia cada vez mais baseada na modelagem automática de vasta quantidade de dados. Desta forma, o sucesso das pesquisas nesta área está diretamente ligado a existência de corpora de domínio público e outros recursos específicos, tal como um dicionário fonético. No Brasil, ao contrário do que acontece para a língua inglesa, por exemplo, não existe atualmente em domínio público um sistema de Reconhecimento Automático de Voz (RAV) para o Português Brasileiro com suporte a grandes vocabulários. Frente a este cenário, o trabalho tem como principal objetivo discutir esforços dentro da iniciativa FalaBrasil [1], criada pelo Laboratório de Processamento de Sinais (LaPS) da UFPA, apresentando pesquisas e softwares na área de RAV para o Português do Brasil. Mais especificamente, o presente trabalho discute a implementação de um sistema de reconhecimento de voz com suporte a grandes vocabulários para o Português do Brasil, utilizando a ferramenta HTK baseada em modelo oculto de Markov (HMM) e a criação de um módulo de conversão grafema-fone, utilizando técnicas de aprendizado de máquina.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Descreve a implementação de um software de reconhecimento de voz para o Português Brasileiro. Dentre os objetivos do trabalho tem-se a construção de um sistema de voz contínua para grandes vocabulários, apto a ser usado em aplicações em tempo-real. São apresentados os principais conceitos e características de tais sistemas, além de todos os passos necessários para construção. Como parte desse trabalho foram produzidos e disponibilizados vários recursos: modelos acústicos e de linguagem, novos corpora de voz e texto. O corpus de texto vem sendo construído através da extração e formatação automática de textos de jornais na Internet. Além disso, foram produzidos dois corpora de voz, um baseado em audiobooks e outro produzido especificamente para simular testes em tempo-real. O trabalho também propõe a utilização de técnicas de adaptação de locutor para resolução de problemas de descasamento acústico entre corpora de voz. Por último, é apresentada uma interface de programação de aplicativos que busca facilitar a utilização do decodificador Julius. Testes de desempenho são apresentados, comparando os sistemas desenvolvidos e um software comercial.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sistemas de reconhecimento e síntese de voz são constituídos por módulos que dependem da língua e, enquanto existem muitos recursos públicos para alguns idiomas (p.e. Inglês e Japonês), os recursos para Português Brasileiro (PB) ainda são escassos. Outro aspecto é que, para um grande número de tarefas, a taxa de erro dos sistemas de reconhecimento de voz atuais ainda é elevada, quando comparada à obtida por seres humanos. Assim, apesar do sucesso das cadeias escondidas de Markov (HMM), é necessária a pesquisa por novos métodos. Este trabalho tem como motivação esses dois fatos e se divide em duas partes. A primeira descreve o desenvolvimento de recursos e ferramentas livres para reconhecimento e síntese de voz em PB, consistindo de bases de dados de áudio e texto, um dicionário fonético, um conversor grafema-fone, um separador silábico e modelos acústico e de linguagem. Todos os recursos construídos encontram-se publicamente disponíveis e, junto com uma interface de programação proposta, têm sido usados para o desenvolvimento de várias novas aplicações em tempo-real, incluindo um módulo de reconhecimento de voz para a suíte de aplicativos para escritório OpenOffice.org. São apresentados testes de desempenho dos sistemas desenvolvidos. Os recursos aqui produzidos e disponibilizados facilitam a adoção da tecnologia de voz para PB por outros grupos de pesquisa, desenvolvedores e pela indústria. A segunda parte do trabalho apresenta um novo método para reavaliar (rescoring) o resultado do reconhecimento baseado em HMMs, o qual é organizado em uma estrutura de dados do tipo lattice. Mais especificamente, o sistema utiliza classificadores discriminativos que buscam diminuir a confusão entre pares de fones. Para cada um desses problemas binários, são usadas técnicas de seleção automática de parâmetros para escolher a representaçãao paramétrica mais adequada para o problema em questão.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A fala é um mecanismo natural para a interação homem-máquina. A tecnologia de processamento de fala (ou voz) encontra-se bastante avançada e, em escala mundial, existe vasta disponibilidade de software, tanto comercial quanto acadêmico. a maioria assume a disponibilidade de um reconhecedor e/ou sintetizador, que pode ser programado via API. Ao contrário do que ocorre, por exemplo, na língua inglesa, inexiste atualmente uma gama variada de recursos para o português brasileiro. O presente trabalho discute alguns esforços realizados nesse sentido, avaliando a utilização da SAPI E JSAPI, que são as APIs da Microsoft e Sun, respectivamente. Serão apresentados, outrossim, exemplos de aplicativos: uma aplicação CALL (baseada em SAPI) usando síntese em inglês e português, reconhecimento em inglês e agentes visuais; e uma proposta para agregar reconhecimento e síntese de voz ao chat IRC através de APIs Java.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In many movies of scientific fiction, machines were capable of speaking with humans. However mankind is still far away of getting those types of machines, like the famous character C3PO of Star Wars. During the last six decades the automatic speech recognition systems have been the target of many studies. Throughout these years many technics were developed to be used in applications of both software and hardware. There are many types of automatic speech recognition system, among which the one used in this work were the isolated word and independent of the speaker system, using Hidden Markov Models as the recognition system. The goals of this work is to project and synthesize the first two steps of the speech recognition system, the steps are: the speech signal acquisition and the pre-processing of the signal. Both steps were developed in a reprogrammable component named FPGA, using the VHDL hardware description language, owing to the high performance of this component and the flexibility of the language. In this work it is presented all the theory of digital signal processing, as Fast Fourier Transforms and digital filters and also all the theory of speech recognition using Hidden Markov Models and LPC processor. It is also presented all the results obtained for each one of the blocks synthesized e verified in hardware

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese apresentada para cumprimento dos requisitos necessários à obtenção do grau de Doutor em Ciências da Educação, na Área de Especialidade: Educação, Sociedade e Desenvolvimento

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Letras - FCLAS

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE